Show simple item record

dc.contributor.authorZhu, Hangtian
dc.contributor.authorHe, Ran
dc.contributor.authorMao, Jun
dc.contributor.authorLiu, Zihang
dc.contributor.authorRen, Wuyang
dc.contributor.authorSingh, David J.
dc.contributor.authorRen, Zhifeng
dc.contributor.authorZhou, Jiawei
dc.contributor.authorLiu, Te Huan
dc.contributor.authorSong, Qichen
dc.contributor.authorLiao, Bolin
dc.contributor.authorChen, Gang
dc.date.accessioned2018-10-11T15:33:03Z
dc.date.available2018-10-11T15:33:03Z
dc.date.issued2018-04
dc.date.submitted2017-09
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/118432
dc.description.abstractModern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Science. Basic Energy Sciences (Award # SC0001299/DE-FG02-09ER46577 (for fundamental research on electron–phonon interaction in thermoelectric materials))en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Materials for Transduction program (Grant HR0011-16-2-0041 (for code development to support practical thermoelectric devices))en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-018-03866-wen_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleLarge thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslersen_US
dc.typeArticleen_US
dc.identifier.citationZhou, Jiawei, Hangtian Zhu, Te-Huan Liu, Qichen Song, Ran He, Jun Mao, Zihang Liu, et al. “Large Thermoelectric Power Factor from Crystal Symmetry-Protected Non-Bonding Orbital in Half-Heuslers.” Nature Communications 9, no. 1 (April 30, 2018).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorZhou, Jiawei
dc.contributor.mitauthorLiu, Te Huan
dc.contributor.mitauthorSong, Qichen
dc.contributor.mitauthorLiao, Bolin
dc.contributor.mitauthorChen, Gang
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-10-10T15:04:31Z
dspace.orderedauthorsZhou, Jiawei; Zhu, Hangtian; Liu, Te-Huan; Song, Qichen; He, Ran; Mao, Jun; Liu, Zihang; Ren, Wuyang; Liao, Bolin; Singh, David J.; Ren, Zhifeng; Chen, Gangen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9872-5688
dc.identifier.orcidhttps://orcid.org/0000-0002-1157-8540
dc.identifier.orcidhttps://orcid.org/0000-0002-1090-4068
dc.identifier.orcidhttps://orcid.org/0000-0002-0898-0803
dc.identifier.orcidhttps://orcid.org/0000-0002-3968-8530
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record