Show simple item record

dc.contributor.authorLiang, Qing
dc.contributor.authorChipperfield, Martyn P.
dc.contributor.authorFleming, Eric L.
dc.contributor.authorAbraham, N. Luke
dc.contributor.authorBraesicke, Peter
dc.contributor.authorBurkholder, James B.
dc.contributor.authorDaniel, John S.
dc.contributor.authorDhomse, Sandip
dc.contributor.authorFraser, Paul J.
dc.contributor.authorHardiman, Steven C.
dc.contributor.authorJackman, Charles H.
dc.contributor.authorKinnison, Douglas E.
dc.contributor.authorKrummel, Paul B.
dc.contributor.authorMontzka, Stephen A.
dc.contributor.authorMorgenstern, Olaf
dc.contributor.authorMcCulloch, Archie
dc.contributor.authorMühle, Jens
dc.contributor.authorNewman, Paul A.
dc.contributor.authorOrkin, Vladimir L.
dc.contributor.authorPitari, Giovanni
dc.contributor.authorRigby, Matthew
dc.contributor.authorRozanov, Eugene
dc.contributor.authorStenke, Andrea
dc.contributor.authorTummon, Fiona
dc.contributor.authorVelders, Guus J. M.
dc.contributor.authorVisioni, Daniele
dc.contributor.authorWeiss, Ray F.
dc.contributor.authorPrinn, Ronald G
dc.date.accessioned2018-10-19T14:05:45Z
dc.date.available2018-10-19T14:05:45Z
dc.date.issued2017-12
dc.date.submitted2017-10
dc.identifier.issn2169-8996
dc.identifier.issn2169-897X
dc.identifier.urihttp://hdl.handle.net/1721.1/118622
dc.description.abstractAn accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CH₃CCl₃) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long-lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH-SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long-term trend and emissions derived from the measured hemispheric gradient, the combination of HFC-32 (CH₂F₂), HFC-134a (CH₂FCF₃, HFC-152a (CH₃CHF₂), and HCFC-22 (CHClF₂), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF. Keywords: hydroxyl; CH₃CCl₃; lifetime; OHen_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Grant NAG5-12669)en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Grant NNX07AE89G)en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Grant NNX11AF17G)en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Grant NNX11AF15G)en_US
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/2017JD026926en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceOther repositoryen_US
dc.titleDeriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CHen_US
dc.typeArticleen_US
dc.identifier.citationLiang, Qing et al. “Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH₃CCl₃ Alternatives.” Journal of Geophysical Research: Atmospheres 122, 21 (November 2017): 11,914–11,933 © 2017 American Geophysical Unionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorPrinn, Ronald G
dc.relation.journalJournal of Geophysical Research: Atmospheresen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-28T18:14:09Z
dspace.orderedauthorsLiang, Qing; Chipperfield, Martyn P.; Fleming, Eric L.; Abraham, N. Luke; Braesicke, Peter; Burkholder, James B.; Daniel, John S.; Dhomse, Sandip; Fraser, Paul J.; Hardiman, Steven C.; Jackman, Charles H.; Kinnison, Douglas E.; Krummel, Paul B.; Montzka, Stephen A.; Morgenstern, Olaf; McCulloch, Archie; Mühle, Jens; Newman, Paul A.; Orkin, Vladimir L.; Pitari, Giovanni; Prinn, Ronald G.; Rigby, Matthew; Rozanov, Eugene; Stenke, Andrea; Tummon, Fiona; Velders, Guus J. M.; Visioni, Daniele; Weiss, Ray F.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5925-3801
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record