dc.contributor.author | Zhang, Zheshen | |
dc.contributor.author | Lütkenhaus, Norbert | |
dc.contributor.author | Shapiro, Jeffrey H. | |
dc.contributor.author | Zhuang, Quntao | |
dc.date.accessioned | 2018-11-05T14:49:14Z | |
dc.date.available | 2018-11-05T14:49:14Z | |
dc.date.issued | 2018-09 | |
dc.date.submitted | 2018-05 | |
dc.identifier.issn | 2469-9926 | |
dc.identifier.issn | 2469-9934 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/118873 | |
dc.description.abstract | Two-way Gaussian protocols have the potential to increase quantum key distribution (QKD) protocols' secret-key rates by orders of magnitudes [Phys. Rev. A 94, 012322 (2016)2469-992610.1103/PhysRevA.94.012322]. Security proofs for two-way protocols, however, are underdeveloped at present. In this paper, we establish a security proof framework for the general coherent attack on two-way Gaussian protocols in the asymptotic regime. We first prove that coherent-attack security can be reduced to collective-attack security for all two-way QKD protocols. Next, we identify two different constraints that each provide intrusion parameters which bound an eavesdropper's coherent-attack information gain for any two-way Gaussian QKD protocol. Finally, we apply our results to two such protocols. | en_US |
dc.description.sponsorship | United States. Air Force Office of Scientific Research (Grant FA9550-14-1-0052) | en_US |
dc.publisher | American Physical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevA.98.032332 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | American Physical Society | en_US |
dc.title | Security-proof framework for two-way Gaussian quantum-key-distribution protocols | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Zhuang, Quntao et al. "Security-proof framework for two-way Gaussian quantum-key-distribution protocols." Physical Review A 98, 3 (September 2018): 032332 © 2018 American Physical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | en_US |
dc.contributor.mitauthor | Zhuang, Quntao | |
dc.relation.journal | Physical Review A | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-09-28T18:00:29Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | American Physical Society | |
dspace.orderedauthors | Zhuang, Quntao; Zhang, Zheshen; Lütkenhaus, Norbert; Shapiro, Jeffrey H. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-9554-3846 | |
mit.license | PUBLISHER_POLICY | en_US |