Show simple item record

dc.contributor.authorWoolston, Benjamin Michael
dc.contributor.authorKing, Jason R
dc.contributor.authorReiter, Michael A.
dc.contributor.authorVan Hove, Bob Walter M.
dc.contributor.authorStephanopoulos, Gregory
dc.date.accessioned2018-11-06T13:18:19Z
dc.date.available2018-11-06T13:18:19Z
dc.date.issued2018-06
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/118902
dc.description.abstractDue to volatile sugar prices, the food vs fuel debate, and recent increases in the supply of natural gas, methanol has emerged as a promising feedstock for the bio-based economy. However, attempts to engineer Escherichia coli to metabolize methanol have achieved limited success. Here, we provide a rigorous systematic analysis of several potential pathway bottlenecks. We show that regeneration of ribulose 5-phosphate in E. coli is insufficient to sustain methanol assimilation, and overcome this by activating the sedoheptulose bisphosphatase variant of the ribulose monophosphate pathway. By leveraging the kinetic isotope effect associated with deuterated methanol as a chemical probe, we further demonstrate that under these conditions overall pathway flux is kinetically limited by methanol dehydrogenase. Finally, we identify NADH as a potent kinetic inhibitor of this enzyme. These results provide direction for future engineering strategies to improve methanol utilization, and underscore the value of chemical biology methodologies in metabolic engineering.en_US
dc.description.sponsorshipUnited States. Advanced Research Projects Agency-Energy (Award DE-AR0000433)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship (Grant No. 1122374)en_US
dc.description.sponsorshipResearch Foundation-Flanderen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-018-04795-4en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleImproving formaldehyde consumption drives methanol assimilation in engineered E. colien_US
dc.typeArticleen_US
dc.identifier.citationWoolston, Benjamin M., Jason R. King, Michael Reiter, Bob Van Hove, and Gregory Stephanopoulos. “Improving Formaldehyde Consumption Drives Methanol Assimilation in Engineered E. Coli.” Nature Communications 9, no. 1 (June 19, 2018).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorWoolston, Benjamin Michael
dc.contributor.mitauthorKing, Jason R
dc.contributor.mitauthorReiter, Michael A.
dc.contributor.mitauthorVan Hove, Bob Walter M.
dc.contributor.mitauthorStephanopoulos, Gregory
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-10-10T14:47:38Z
dspace.orderedauthorsWoolston, Benjamin M.; King, Jason R.; Reiter, Michael; Van Hove, Bob; Stephanopoulos, Gregoryen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6570-2236
dc.identifier.orcidhttps://orcid.org/0000-0001-6677-4576
dc.identifier.orcidhttps://orcid.org/0000-0001-6909-4568
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record