Show simple item record

dc.contributor.authorWalsh, Kathleen A.
dc.contributor.authorRomanowich, Megan E.
dc.contributor.authorGasseller, Morewell
dc.contributor.authorKuljanishvili, Irma
dc.contributor.authorAshoori, Raymond
dc.contributor.authorTessmer, Stuart
dc.date.accessioned2019-03-07T19:00:30Z
dc.date.available2019-03-07T19:00:30Z
dc.date.issued2013-07
dc.identifier.issn1940-087X
dc.identifier.urihttp://hdl.handle.net/1721.1/120815
dc.description.abstractThe integration of low-temperature scanning-probe techniques and single-electron capacitance spectroscopy represents a powerful tool to study the electronic quantum structure of small systems - including individual atomic dopants in semiconductors. Here we present a capacitance-based method, known as Subsurface Charge Accumulation (SCA) imaging, which is capable of resolving single-electron charging while achieving sufficient spatial resolution to image individual atomic dopants. The use of a capacitance technique enables observation of subsurface features, such as dopants buried many nanometers beneath the surface of a semiconductor material. In principle, this technique can be applied to any system to resolve electron motion below an insulating surface. As in other electric-field-sensitive scanned-probe techniques, the lateral spatial resolution of the measurement depends in part on the radius of curvature of the probe tip. Using tips with a small radius of curvature can enable spatial resolution of a few tens of nanometers. This fine spatial resolution allows investigations of small numbers (down to one) of subsurface dopants. The charge resolution depends greatly on the sensitivity of the charge detection circuitry; using high electron mobility transistors (HEMT) in such circuits at cryogenic temperatures enables a sensitivity of approximately 0.01 electrons/Hz[superscript ½] at 0.3 K[superscript 5].en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMR-0305461)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMR-0906939)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMR-0605801)en_US
dc.description.sponsorshipMichigan State University. Institute for Quantum Sciencesen_US
dc.publisherMyJove Corporationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3791/50676en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceJournal of Visualized Experiments (JOVE)en_US
dc.titleScanning-probe Single-electron Capacitance Spectroscopyen_US
dc.typeArticleen_US
dc.identifier.citationWalsh, Kathleen A., Megan E. Romanowich, Morewell Gasseller, Irma Kuljanishvili, Raymond Ashoori, and Stuart Tessmer. “Scanning-Probe Single-Electron Capacitance Spectroscopy.” Journal of Visualized Experiments no. 77 (July 30, 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorAshoori, Raymond
dc.relation.journalJournal of Visualized Experimentsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-06T19:19:49Z
dspace.orderedauthorsWalsh, Kathleen A.; Romanowich, Megan E.; Gasseller, Morewell; Kuljanishvili, Irma; Ashoori, Raymond; Tessmer, Stuarten_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5031-1673
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record