Show simple item record

dc.contributor.authorHoque, Mohammed Ehasanul
dc.contributor.authorCurhan, Jared R.
dc.contributor.authorLi, Rui
dc.date.accessioned2019-03-11T17:05:37Z
dc.date.available2019-03-11T17:05:37Z
dc.date.issued2018-02
dc.identifier.urihttp://hdl.handle.net/1721.1/120862
dc.description.abstractAutomatic facial expression analysis in inter-personal communication is challenging. Not only because conversation partners' facial expressions mutually influence each other, but also because no correct interpretation of facial expressions is possible without taking social context into account. In this paper, we propose a probabilistic framework to model interactional synchronization between conversation partners based on their facial expressions. Interactional synchronization manifests temporal dynamics of conversation partners' mutual influence. In particular, the model allows us to discover a set of common and unique facial synchronization templates directly from natural interpersonal interaction without recourse to any predefined labeling schemes. The facial synchronization templates represent periodical facial event coordinations shared by multiple conversation pairs in a specific social context. We test our model on two different dyadic conversations of negotiation and job-interview. Based on the discovered facial event coordination, we are able to predict their conversation outcomes with higher accuracy than HMMs and GMMs.en_US
dc.publisherAAAI Pressen_US
dc.relation.isversionofhttps://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17060/15856en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleUnderstanding social interpersonal interaction via synchronization templates of facial eventsen_US
dc.typeArticleen_US
dc.identifier.citationLi, Rui, Jared Curhan, Mohammed Ehsan Hoque. "Understanding Social Interpersonal Interaction via Synchronization Templates of Facial Events." Thirty-Second AAAI Conference on Artificial Intelligence (AAAI18), February 2-7, 2018, New Orleans, Louisiana.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorCurhan, Jared R
dc.contributor.mitauthorHoque, Mohammed Ehasanul
dc.relation.journalThirty-Second AAAI Conference on Artificial Intelligence (AAAI-18)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-02-06T19:42:32Z
dspace.orderedauthorsLi, Rui; Curhan, Jared; Hoque, Mohammed Ehasanulen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0625-1831
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record