Show simple item record

dc.contributor.authorMeriin, Anatoli
dc.contributor.authorSherman, Michael Y
dc.contributor.authorNarayanan, Arjun
dc.contributor.authorAndrews, James Owen
dc.contributor.authorSpille, Jan Hendrik
dc.contributor.authorCisse, Ibrahim I
dc.date.accessioned2019-03-13T16:42:53Z
dc.date.available2019-03-13T16:42:53Z
dc.date.issued2019-02
dc.date.submitted2018-06
dc.identifier.issn2050-084X
dc.identifier.urihttp://hdl.handle.net/1721.1/120950
dc.description.abstractThe formation of misfolded protein aggregates is a hallmark of neurodegenerative diseases. The aggregate formation process exhibits an initial lag phase when precursor clusters spontaneously assemble. However, most experimental assays are blind to this lag phase. We develop a quantitative assay based on super-resolution imaging in fixed cells and light sheet imaging of living cells to study the early steps of aggregation in mammalian cells. We find that even under normal growth conditions mammalian cells have precursor clusters. The cluster size distribution is precisely that expected for a so-called super-saturated system in first order phase transition. This means there exists a nucleation barrier, and a critical size above which clusters grow and mature. Homeostasis is maintained through a Szilard model entailing the preferential clearance of super-critical clusters. We uncover a role for a putative chaperone (RuvBL) in this disassembly of large clusters. The results indicate early aggregates behave like condensates. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP2CA195769)en_US
dc.publishereLife Sciences Publications, Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.7554/eLife.39695en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceeLifeen_US
dc.titleA first order phase transition mechanism underlies protein aggregation in mammalian cellsen_US
dc.typeArticleen_US
dc.identifier.citationNarayanan, Arjun et al. “A First Order Phase Transition Mechanism Underlies Protein Aggregation in Mammalian Cells.” eLife 8 (February 2019): e39695 © 2019 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorNarayanan, Arjun
dc.contributor.mitauthorAndrews, James Owen
dc.contributor.mitauthorSpille, Jan Hendrik
dc.contributor.mitauthorCisse, Ibrahim I
dc.relation.journaleLifeen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-13T12:47:52Z
dspace.orderedauthorsNarayanan, Arjun; Meriin, Anatoli; Andrews, J Owen; Spille, Jan-Hendrik; Sherman, Michael Y; Cisse, Ibrahim Ien_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2269-3253
dc.identifier.orcidhttps://orcid.org/0000-0003-1867-4380
dc.identifier.orcidhttps://orcid.org/0000-0001-8493-4721
dc.identifier.orcidhttps://orcid.org/0000-0002-8764-1809
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record