Show simple item record

dc.contributor.authorElGibreen, Hebah
dc.contributor.authorYoucef-Toumi, Kamal
dc.date.accessioned2021-09-20T17:30:52Z
dc.date.available2021-09-20T17:30:52Z
dc.date.issued2019-01-09
dc.identifier.urihttps://hdl.handle.net/1721.1/131903
dc.description.abstractAbstract Dynamic task allocation (DTA) is a key feature in collaborative robotics. It affects organizations’ profits and allows agents to perform more tasks when efficiently designed. Although some work has been done on DTA, allocating tasks dynamically in an uncertain environment between heterogeneous multi-agents has rarely been investigated. The solutions proposed so far have inefficiently managed uncertainty, and none of them has utilized the semantics of heterogeneous agents’ capabilities. Studies measuring the performance of these techniques on real robots are also scarce. Therefore, this paper proposes an online DTA method, which introduces new functionalities that can be applied in a real environment. In particular, an uncertain incremental cost function is developed with a distributed semantic negotiation strategy that reflects heterogeneous capabilities without needing to communicate them. The proposed method is tested in a dynamic environment and experiments on heterogeneous real/virtual robots are conducted with different numbers of agents. Different statistical and visualization tools are used to analyze the results, including bar graphs for the waiting time metrics, histograms for the waiting time frequency, scatter plots for the result distribution and variance, and critical difference diagrams for ANOVA–Tukey results. The results indicate that the proposed DTA balances allocation quality and reliability, allowing the agents to serve targets equally without neglecting certain targets at the expense of the total performance. Evidently, updating the cost incrementally allows agents to update their allocation and choose better routes to finish the task earlier. Understanding the capability also gives priority to the capable agents that complete the task faster.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10514-018-09820-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleDynamic task allocation in an uncertain environment with heterogeneous multi-agentsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:31:49Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:31:49Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record