MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Observation of the high-order Mollow triplet by quantum mode control with concatenated continuous driving

Author(s)
Wang, Guoqing; Liu, Yi-Xiang; Cappellaro, Paola
Thumbnail
DownloadPublished version (1.599Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2021 American Physical Society. The Mollow triplet is a fundamental signature of quantum optics and has been observed in numerous quantum systems. Although it arises in the "strong driving"regime of the quantized field, where the atoms undergo coherent oscillations, it can be typically analyzed within the rotating wave approximation. Here we report the first observation of high-order effects in the Mollow triplet structure due to strong driving. In experiments, we explore the regime beyond the rotating wave approximation using concatenated continuous driving that has less stringent requirements on the driving field power. We are then able to reveal additional transition frequencies, shifts in energy levels, and corrections to the transition amplitudes. In particular, we find that these amplitudes are more sensitive to high-order effects than the frequency shifts and that they still require an accurate determination in order to achieve high-fidelity quantum control. The experimental results are validated by Floquet theory, which enables the precise numerical simulation of the evolution and further provides an analytical form for an effective Hamiltonian that approximately predicts the spin dynamics beyond the rotating wave approximation.
Date issued
2021
URI
https://hdl.handle.net/1721.1/133367
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review A
Publisher
American Physical Society (APS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.