Show simple item record

dc.contributor.authorKanwar, Gurtej
dc.contributor.authorAlbergo, Michael S
dc.contributor.authorBoyda, Denis
dc.contributor.authorCranmer, Kyle
dc.contributor.authorHackett, Daniel C
dc.contributor.authorRacanière, Sébastien
dc.contributor.authorRezende, Danilo Jimenez
dc.contributor.authorShanahan, Phiala E
dc.date.accessioned2021-10-27T20:04:50Z
dc.date.available2021-10-27T20:04:50Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/134400
dc.description.abstractWe define a class of machine-learned flow-based sampling algorithms for lattice gauge theories that are gauge invariant by construction. We demonstrate the application of this framework to U(1) gauge theory in two spacetime dimensions, and find that, at small bare coupling, the approach is orders of magnitude more efficient at sampling topological quantities than more traditional sampling procedures such as hybrid Monte Carlo and heat bath.
dc.language.isoen
dc.publisherAmerican Physical Society (APS)
dc.relation.isversionof10.1103/PhysRevLett.125.121601
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceAPS
dc.titleEquivariant Flow-Based Sampling for Lattice Gauge Theory
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physics
dc.relation.journalPhysical Review Letters
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-07-09T12:05:49Z
dspace.orderedauthorsKanwar, G; Albergo, MS; Boyda, D; Cranmer, K; Hackett, DC; Racanière, S; Rezende, DJ; Shanahan, PE
dspace.date.submission2021-07-09T12:05:50Z
mit.journal.volume125
mit.journal.issue12
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record