Show simple item record

dc.contributor.authorChen, Yutong
dc.date.accessioned2025-10-31T18:39:56Z
dc.date.available2025-10-31T18:39:56Z
dc.date.issued2025-07-30
dc.identifier.urihttps://hdl.handle.net/1721.1/163485
dc.description.abstractThis paper studies the dynamics of isometries in the curtain model, which is used to capture the hyperbolicity in a fixed CAT(0) space. We establish several fundamental properties and fully classify the behavior of semisimple isometries of a CAT(0) space in the associated curtain model. In the nonsemisimple case, we restrict the behavior of parabolic actions with positive translation length in the curtain model in most cases of interest, allowing the use of ping-pong-like techniques on the curtain model to provide insights into the study of CAT(0) groups.en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10711-025-01031-4en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Netherlandsen_US
dc.titleCurtain Model for CAT(0) Spaces and Isometriesen_US
dc.typeArticleen_US
dc.identifier.citationChen, Y. Curtain Model for CAT(0) Spaces and Isometries. Geom Dedicata 219, 69 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalGeometriae Dedicataen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-26T04:22:21Z
dc.language.rfc3066en
dc.rights.holderCrown
dspace.embargo.termsN
dspace.date.submission2025-10-26T04:22:21Z
mit.journal.volume219en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record