Show simple item record

dc.contributor.authorPacaud, François
dc.contributor.authorShin, Sungho
dc.date.accessioned2025-12-09T15:42:41Z
dc.date.available2025-12-09T15:42:41Z
dc.date.issued2025-02-26
dc.identifier.urihttps://hdl.handle.net/1721.1/164245
dc.description2024 IEEE 63rd Conference on Decision and Control (CDC), Milan, Italy, 2024en_US
dc.description.abstractWe investigate the potential of Graphics Processing Units (GPUs) to solve large-scale nonlinear programs with a dynamic structure. Using ExaModels, a GPU-accelerated automatic differentiation tool, and the interior-point solver MadNLP, we significantly reduce the time to solve dynamic nonlinear optimization problems. The sparse linear systems formulated in the interior-point method is solved on the GPU using a hybrid solver combining an iterative method with a sparse Cholesky factorization, which harness the newly released NVIDIA cuDSS solver. Our results on the classical distillation column instance show that despite a significant pre-processing time, the hybrid solver allows to reduce the time per iteration by a factor of $\mathbf{2 5}$ for the largest instance.en_US
dc.language.isoen
dc.publisherIEEE|2024 IEEE 63rd Conference on Decision and Controlen_US
dc.relation.isversionof10.1109/cdc56724.2024.10886720en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearxiven_US
dc.titleGPU-accelerated dynamic nonlinear optimization with ExaModels and MadNLPen_US
dc.typeArticleen_US
dc.identifier.citationF. Pacaud and S. Shin, "GPU-accelerated dynamic nonlinear optimization with ExaModels and MadNLP," 2024 IEEE 63rd Conference on Decision and Control (CDC), Milan, Italy, 2024, pp. 5963-5968.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2025-12-08T22:16:32Z
dspace.orderedauthorsPacaud, F; Shin, Sen_US
dspace.date.submission2025-12-08T22:16:33Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record