MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biological scaffolds for the peptide-directed assembly of nanoscale materials and devices

Author(s)
Solis, Daniel J., 1978-
Thumbnail
DownloadFull printable version (16.63Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Angela M. Belcher.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/34492 http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The utilization of biological factors in the design, synthesis and fabrication of nano-scaled materials and devices presents novel, large scale solutions for the realization of future technologies. In particular, we have genetically modified the M13 Filamentous Bacteriophage for its use as a biological scaffold in the peptide-controlled nucleation and patterning of nanoscale semiconducting and magnetic materials. Through evolutionary phage display screening of inorganic substrates, functional peptides that influence material properties such as size, phase and composition during nucleation have been identified. The incorporation of these specific, nucleating peptides into the generic scaffold of the M13 coat structure provides a viable linear template for the directed synthesis of semiconducting and magnetic nanowires. Through further modification of the remaining proteins on the virus scaffold, other functionalities can be incorporated such as the directed patterning of the virus/nanowires assemblies into nanoscaled devices with tunable properties as determined by the genetic information carried within the virus scaffold. Multi-functional viruses provide a truly self assembled system for the design and execution of a myriad of nanoscaled devices in a green, scalable and cost effective manner.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2006.
 
Vita.
 
Includes bibliographical references.
 
Date issued
2006
URI
http://dspace.mit.edu/handle/1721.1/34492
http://hdl.handle.net/1721.1/34492
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.