MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Human walking model predicts joint mechanics, electromyography and mechanical economy

Author(s)
Endo, Ken; Herr, Hugh M.
Thumbnail
DownloadEndo-2009-Human walking model predicts joint mechanics, electromyography and mechanical economy.pdf (409.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper, we present an under-actuated model of human walking, comprising only a soleus muscle and flexion/extension monoarticular hip muscles. The remaining muscle groups of the human leg are modeled using quasi-passive, series-elastic clutch elements. We hypothesize that series-elastic clutch units spanning the knee joint in a musculoskeletal arrangement can capture the dominant mechanical behaviors of the human knee in level-ground walking. As an evaluation of the musculoskeletal model, we vary model parameters, or spring constants, and muscle control parameters using an optimization scheme that maximizes walking distance and minimizes the mechanical economy of walking. We used a positive force feedback reflex control for the model's soleus muscle, and upper body position control for the hip muscles. The model's clutches were engaged/disengaged using simple state machine controllers. For model evaluation, a forward dynamics simulation was conducted, and the resulting mechanics were compared to human walking data. The model makes qualitative predictions of joint mechanics, electromyography and mechanical economy.
Date issued
2009-12
URI
http://hdl.handle.net/1721.1/59292
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Media Laboratory
Journal
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009
Publisher
Institute of Electrical and Electronics Engineers
Citation
Endo, K., and H. Herr. “Human walking model predicts joint mechanics, electromyography and mechanical economy.” Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. 2009. 4663-4668. © Copyright 2010 IEEE
Version: Final published version
Other identifiers
INSPEC Accession Number: 11009977
ISBN
978-1-4244-3803-7

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.