dc.contributor.author | Demaine, Erik D. | |
dc.contributor.author | Zadimoghaddam, Morteza | |
dc.date.accessioned | 2011-04-15T17:35:21Z | |
dc.date.available | 2011-04-15T17:35:21Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/62215 | |
dc.description.abstract | We study the problem of minimizing the diameter of a graph by adding k shortcut edges, for speeding up communication in an existing network design. We develop constant-factor approximation algorithms for different variations of this problem. We also show how to improve the approximation ratios using resource augmentation to allow more than k shortcut edges. We observe a close relation between the single-source version of the problem, where we want to minimize the largest distance from a given source vertex, and the well-known k-median problem. First we show that our constant-factor approximation algorithms for the general case solve the single-source problem within a constant factor. Then, using a linear-programming formulation for the single-source version, we find a (1 + ε)[1 plus epsilon] -approximation using O(klogn) shortcut edges. To show the tightness of our result, we prove that any (3/2-e)[3/2 minus epsilon]-approximation for the single-source version must use Ω(klogn)[omega (klogn)] shortcut edges assuming P ≠ NP. | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-3-642-13731-0_39 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Minimizing the Diameter of a Network Using Shortcut Edges | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Demaine, Erik, and Morteza Zadimoghaddam. “Minimizing the Diameter of a Network Using Shortcut Edges.” Algorithm Theory - SWAT 2010. Springer Berlin / Heidelberg, 2010. 420-431. (Lecture notes in computer science, v. 6139)Copyright © 2010, Springer | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.approver | Demaine, Erik D. | |
dc.contributor.mitauthor | Demaine, Erik D. | |
dc.contributor.mitauthor | Zadimoghaddam, Morteza | |
dc.relation.journal | Algorithm theory, SWAT ... : proceedings / Scandinavian Workshop on Algorithm Theory | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
dspace.orderedauthors | Demaine, Erik D.; Zadimoghaddam, Morteza | en |
dc.identifier.orcid | https://orcid.org/0000-0003-3803-5703 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |