dc.contributor.author | Henann, David Lee | |
dc.contributor.author | Anand, Lallit | |
dc.date.accessioned | 2011-08-05T20:15:43Z | |
dc.date.available | 2011-08-05T20:15:43Z | |
dc.date.issued | 2011-08 | |
dc.identifier.issn | 0374-3535 | |
dc.identifier.issn | 1573-2681 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/65101 | |
dc.description.abstract | For an isotropic hyperelastic material, the free energy per unit reference
volume, ψ [psi], may be expressed in terms of an isotropic function ψ = ¯ ψ(E) [psi = psi overscore (E)] of the
logarithmic elastic strain E = ln V. We have conducted numerical experiments
using molecular dynamics simulations of a metallic glass to develop the following
simple specialized form of the free energy for circumstances in which one might
encounter a large volumetric strain trE, but the shear strain √2|E0| [square root 2 pipe E subscript 0 pipe] (with E0 [E supscript 0] the
deviatoric part of E) is small but not infinitesimal:
ψ(E) = μ(trE) |E0|2 [psi (E)= mu (trE pipe E subscript 0 pipe superscript 2] + g(trE) , with
μ(trE) = μr − (μr − μ0) exp„trE
ǫr « [mu (trE) = mu subscript x - (mu subscript x - mu subscript 0) exp (trE divided by epsilon subscript x)], and
g(trE) = κ0 (ǫc)2 »1 − „1 +
trE
ǫc «exp„−
trE
ǫc «– [g(trE) = kappa subscript 0 (epsilon subscript c) superscript 2 [1-(1 + trE divided by epsilon subscript c) exp (-trE divided by epsilon subscript c)]].
This free energy has five material constants — the two classical positive-valued
shear and bulk moduli μ0 [mu subscript 0] and κ0 [kappa subscript 0] of the infinitesimal theory of elasticity, and
three additional positive-valued material constants (μr, ǫr, ǫc) [(mu subscript r, epsilon subscript r, epsilon subscript c)], which are used to
characterize the nonlinear response at large values of trE. In the large volumetric
strain range −0.30 ≤ trE ≤ 0.15 but small shear strain range √2|E0| [square root 2 pipe E subscript 0 pipe < or about] 0.05
numerically explored in this paper, this simple five-constant model provides a
very good description of the stress-strain results from our molecular dynamics
simulations.
D. L. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant CMS-0555614) | en_US |
dc.description.sponsorship | Singapore-MIT Alliance | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s10659-010-9297-y | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | Prof. Anand | en_US |
dc.title | A Large Strain Isotropic Elasticity Model Based on Molecular Dynamics Simulations of a Metallic Glass | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Henann, David L., and Lallit Anand. “A Large Strain Isotropic Elasticity Model Based on Molecular Dynamics Simulations of a Metallic Glass.” Journal of Elasticity 104.1-2 (2011) : 281-302. Copyright © 2011, Springer Science+Business Media B.V. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.approver | Anand, Lallit | |
dc.contributor.mitauthor | Henann, David Lee | |
dc.contributor.mitauthor | Anand, Lallit | |
dc.relation.journal | Journal of Elasticity | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Henann, David L.; Anand, Lallit | en |
dc.identifier.orcid | https://orcid.org/0000-0002-4581-7888 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |