Show simple item record

dc.contributor.authorHenann, David Lee
dc.contributor.authorAnand, Lallit
dc.date.accessioned2011-08-05T20:15:43Z
dc.date.available2011-08-05T20:15:43Z
dc.date.issued2011-08
dc.identifier.issn0374-3535
dc.identifier.issn1573-2681
dc.identifier.urihttp://hdl.handle.net/1721.1/65101
dc.description.abstractFor an isotropic hyperelastic material, the free energy per unit reference volume, ψ [psi], may be expressed in terms of an isotropic function ψ = ¯ ψ(E) [psi = psi overscore (E)] of the logarithmic elastic strain E = ln V. We have conducted numerical experiments using molecular dynamics simulations of a metallic glass to develop the following simple specialized form of the free energy for circumstances in which one might encounter a large volumetric strain trE, but the shear strain √2|E0| [square root 2 pipe E subscript 0 pipe] (with E0 [E supscript 0] the deviatoric part of E) is small but not infinitesimal: ψ(E) = μ(trE) |E0|2 [psi (E)= mu (trE pipe E subscript 0 pipe superscript 2] + g(trE) , with μ(trE) = μr − (μr − μ0) exp„trE ǫr « [mu (trE) = mu subscript x - (mu subscript x - mu subscript 0) exp (trE divided by epsilon subscript x)], and g(trE) = κ0 (ǫc)2 »1 − „1 + trE ǫc «exp„− trE ǫc «– [g(trE) = kappa subscript 0 (epsilon subscript c) superscript 2 [1-(1 + trE divided by epsilon subscript c) exp (-trE divided by epsilon subscript c)]]. This free energy has five material constants — the two classical positive-valued shear and bulk moduli μ0 [mu subscript 0] and κ0 [kappa subscript 0] of the infinitesimal theory of elasticity, and three additional positive-valued material constants (μr, ǫr, ǫc) [(mu subscript r, epsilon subscript r, epsilon subscript c)], which are used to characterize the nonlinear response at large values of trE. In the large volumetric strain range −0.30 ≤ trE ≤ 0.15 but small shear strain range √2|E0| [square root 2 pipe E subscript 0 pipe < or about] 0.05 numerically explored in this paper, this simple five-constant model provides a very good description of the stress-strain results from our molecular dynamics simulations. D. L.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMS-0555614)en_US
dc.description.sponsorshipSingapore-MIT Allianceen_US
dc.language.isoen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10659-010-9297-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Ananden_US
dc.titleA Large Strain Isotropic Elasticity Model Based on Molecular Dynamics Simulations of a Metallic Glassen_US
dc.typeArticleen_US
dc.identifier.citationHenann, David L., and Lallit Anand. “A Large Strain Isotropic Elasticity Model Based on Molecular Dynamics Simulations of a Metallic Glass.” Journal of Elasticity 104.1-2 (2011) : 281-302. Copyright © 2011, Springer Science+Business Media B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverAnand, Lallit
dc.contributor.mitauthorHenann, David Lee
dc.contributor.mitauthorAnand, Lallit
dc.relation.journalJournal of Elasticityen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHenann, David L.; Anand, Lalliten
dc.identifier.orcidhttps://orcid.org/0000-0002-4581-7888
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record