Show simple item record

dc.contributor.authorMistry, Karan Hemant
dc.contributor.authorMcGovern, Ronan Killian
dc.contributor.authorThiel, Gregory P.
dc.contributor.authorSummers, Edward K.
dc.contributor.authorZubair, Syed M.
dc.contributor.authorLienhard, John H.
dc.date.accessioned2012-02-28T14:06:31Z
dc.date.available2012-02-28T14:06:31Z
dc.date.issued2011-09
dc.date.submitted2011-09
dc.identifier.issn1099-4300
dc.identifier.urihttp://hdl.handle.net/1721.1/69217
dc.description.abstractIncreasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.en_US
dc.description.sponsorshipKing Fahd University of Petroleum and Mineralsen_US
dc.description.sponsorshipCenter for Clean Water and Clean Energy at MITen_US
dc.language.isoen_US
dc.publisherMDPI Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/e13101829en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceKaran Mistryen_US
dc.titleEntropy Generation Analysis of Desalination Technologiesen_US
dc.typeArticleen_US
dc.identifier.citationMistry, Karan H. et al. “Entropy Generation Analysis of Desalination Technologies.” Entropy 13.10 (2011): 1829-1864. © 2011 MDPI Publishingen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverLienhard, John H.
dc.contributor.mitauthorMistry, Karan Hemant
dc.contributor.mitauthorMcGovern, Ronan Killian
dc.contributor.mitauthorThiel, Gregory P.
dc.contributor.mitauthorSummers, Edward K.
dc.contributor.mitauthorLienhard, John H.
dc.relation.journalEntropyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMistry, Karan H.; McGovern, Ronan K.; Thiel, Gregory P.; Summers, Edward K.; Zubair, Syed M.; Lienhard V, John H.en
dc.identifier.orcidhttps://orcid.org/0000-0002-2901-0638
dc.identifier.orcidhttps://orcid.org/0000-0002-3808-8824
dc.identifier.orcidhttps://orcid.org/0000-0002-4583-1057
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record