Assessing continuum postulates in simulations of granular flow
Author(s)
Rycroft, Chris H.; Kamrin, Kenneth N.; Bazant, Martin Z.
DownloadBazant Assessing Continuum rev for upload.pdf (3.469Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Continuum mechanics relies on the fundamental notion of a mesoscopic volume “element” in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests that a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional discrete-element method (DEM) simulations of different granular flows and show that an approximate “granular element” defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships between average variables.
Date issued
2009-05Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of MathematicsJournal
Journal of the Mechanics and Physics of Solids
Publisher
Elsevier
Citation
Rycroft, Chris H., Ken Kamrin, and Martin Z. Bazant. “Assessing continuum postulates in simulations of granular flow.” Journal of the Mechanics and Physics of Solids 57.5 (2009): 828-839.
Version: Author's final manuscript
ISSN
0022-5096