Show simple item record

dc.contributor.authorWendler, Petra
dc.contributor.authorShorter, James
dc.contributor.authorSnead, David
dc.contributor.authorPlisson, Celia
dc.contributor.authorClare, Daniel K.
dc.contributor.authorSaibil, Helen R.
dc.contributor.authorLindquist, Susan
dc.date.accessioned2012-05-25T22:09:00Z
dc.date.available2012-05-25T22:09:00Z
dc.date.issued2009-04
dc.date.submitted2008-12
dc.identifier.issn1097-2765
dc.identifier.urihttp://hdl.handle.net/1721.1/70958
dc.description.abstractThe protein-remodeling machine Hsp104 dissolves amorphous aggregates as well as ordered amyloid assemblies such as yeast prions. Force generation originates from a tandem AAA+ (ATPases associated with various cellular activities) cassette, but the mechanism and allostery of this action remain to be established. Our cryoelectron microscopy maps of Hsp104 hexamers reveal substantial domain movements upon ATP binding and hydrolysis in the first nucleotide-binding domain (NBD1). Fitting atomic models of Hsp104 domains to the EM density maps plus supporting biochemical measurements show how the domain movements displace sites bearing the substrate-binding tyrosine loops. This provides the structural basis for N- to C-terminal substrate threading through the central cavity, enabling a clockwise handover of substrate in the NBD1 ring and coordinated substrate binding between NBD1 and NBD2. Asymmetric reconstructions of Hsp104 in the presence of ATPγS or ATP support sequential rather than concerted ATP hydrolysis in the NBD1 ring.en_US
dc.description.sponsorshipEuropean Union Integrated Project 3D-Repertoire and 3DEM Network of Excellenceen_US
dc.description.sponsorshipHuman Frontier Science Program (Strasbourg, France)en_US
dc.description.sponsorshipWellcome Trust (London, England)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Director’s New Innovator Award DP2OD002177)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.molcel.2009.02.026en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleMotor Mechanism for Protein Threading through Hsp104en_US
dc.typeArticleen_US
dc.identifier.citationWendler, Petra et al. “Motor Mechanism for Protein Threading Through Hsp104.” Molecular Cell 34.1 (2009): 81–92. Web. 25 May 2012. © 2009 Elsevier Inc.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentWhitehead Institute for Biomedical Researchen_US
dc.contributor.approverLindquist, Susan
dc.contributor.mitauthorLindquist, Susan
dc.relation.journalMolecular Cellen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWendler, Petra; Shorter, James; Snead, David; Plisson, Celia; Clare, Daniel K.; Lindquist, Susan; Saibil, Helen R.en
dc.identifier.orcidhttps://orcid.org/0000-0003-1307-882X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record