Advanced Search
DSpace@MIT

Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.author Potsaid, Benjamin M.
dc.contributor.author Baumann, Bernhard
dc.contributor.author Huang, David
dc.contributor.author Barry, Scott
dc.contributor.author Cable, Alex E.
dc.contributor.author Schuman, Joel S.
dc.contributor.author Duker, Jay S.
dc.contributor.author Fujimoto, James G.
dc.date.accessioned 2012-08-01T16:07:57Z
dc.date.available 2012-08-01T16:07:57Z
dc.date.issued 2010-09
dc.date.submitted 2010-08
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/1721.1/71932
dc.description.abstract We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000 – 400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100kHz axial scan rate with 5.3um axial resolution in tissue. Fixed rate sampling at 1 GSPS achieves a 7.5mm imaging range in tissue with 6.0um axial resolution at 100kHz axial scan rate. A 200kHz axial scan rate with 5.3um axial resolution over 4mm imaging range is achieved by buffering the laser sweep. Dual spot OCT using two parallel interferometers achieves 400kHz axial scan rate, almost 2X faster than previous 1050nm ophthalmic results and 20X faster than current commercial instruments. Superior sensitivity roll-off performance is shown. Imaging is demonstrated in the human retina and anterior segment. Wide field 12×12mm data sets include the macula and optic nerve head. Small area, high density imaging shows individual cone photoreceptors. The 7.5mm imaging range configuration can show the cornea, iris, and anterior lens in a single image. These improvements in imaging speed and depth range provide important advantages for ophthalmic imaging. The ability to rapidly acquire 3D-OCT data over a wide field of view promises to simplify examination protocols. The ability to image fine structures can provide detailed information on focal pathologies. The large imaging range and improved image penetration at 1050nm wavelengths promises to improve performance for instrumentation which images both the retina and anterior eye. These advantages suggest that swept source OCT at 1050nm wavelengths will play an important role in future ophthalmic instrumentation. en_US
dc.description.sponsorship National Institutes of Health (U.S.) (5R01-EY011289-23) en_US
dc.description.sponsorship National Institutes of Health (U.S.) (5R01-EY013178-10) en_US
dc.description.sponsorship National Institutes of Health (U.S.) (2R01-EY013516-07) en_US
dc.description.sponsorship National Institutes of Health (U.S.) (1R01-EY019029-02) en_US
dc.description.sponsorship United States. Air Force Office of Scientific Research (Contract Number FA9550-07-1-0014) en_US
dc.description.sponsorship United States. Dept. of Defense. Medical Free Electron Laser Program (Contract Number FA9550-07-1-0101) en_US
dc.language.iso en_US
dc.publisher Optical Society of America en_US
dc.relation.isversionof http://dx.doi.org/10.1364/OE.18.020029 en_US
dc.rights Creative Commons Attribution-Noncommercial-Share Alike 3.0 en_US
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/ en_US
dc.source PubMed Central en_US
dc.title Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second en_US
dc.type Article en_US
dc.identifier.citation Potsaid, Benjamin et al. “Ultrahigh Speed 1050nm Swept Source / Fourier Domain OCT Retinal and Anterior Segment Imaging at 100,000 to 400,000 Axial Scans Per Second.” Optics Express 18.19 (2010): 20029. en_US
dc.contributor.department Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science en_US
dc.contributor.department Massachusetts Institute of Technology. Research Laboratory of Electronics en_US
dc.contributor.approver Fujimoto, James G.
dc.contributor.mitauthor Potsaid, Benjamin M.
dc.contributor.mitauthor Baumann, Bernhard
dc.contributor.mitauthor Fujimoto, James G.
dc.relation.journal Optics Express en_US
dc.identifier.mitlicense OPEN_ACCESS_POLICY en_US
dc.eprint.version Author's final manuscript en_US
dc.type.uri http://purl.org/eprint/type/JournalArticle en_US
eprint.status http://purl.org/eprint/status/PeerReviewed en_US
dspace.orderedauthors Potsaid, Benjamin; Baumann, Bernhard; Huang, David; Barry, Scott; Cable, Alex E.; Schuman, Joel S.; Duker, Jay S.; Fujimoto, James G. en


Files in this item

Name Size Format
Downloadable Full Text - PDF

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-Noncommercial-Share Alike 3.0 Except where otherwise noted, this item's license is described as Creative Commons Attribution-Noncommercial-Share Alike 3.0
Open Access