Show simple item record

dc.contributor.authorShah, Devavrat
dc.contributor.authorTse, David N. C.
dc.contributor.authorTsitsiklis, John N.
dc.date.accessioned2012-09-12T18:37:48Z
dc.date.available2012-09-12T18:37:48Z
dc.date.issued2011-12
dc.date.submitted2011-03
dc.identifier.issn0018-9448
dc.identifier.urihttp://hdl.handle.net/1721.1/72671
dc.description.abstractWe consider a communication network and study the problem of designing a high-throughput and low-delay scheduling policy that only requires a polynomial amount of computation at each time step. The well-known maximum weight scheduling policy, proposed by Tassiulas and Ephremides (1992), has favorable performance in terms of throughput and delay but, for general networks, it can be computationally very expensive. A related randomized policy proposed by Tassiulas (1998) provides maximal throughput with only a small amount of computation per step, but seems to induce exponentially large average delay. These considerations raise some natural questions. Is it possible to design a policy with low complexity, high throughput, and low delay for a general network? Does Tassiulas' randomized policy result in low average delay? In this paper, we answer both of these questions negatively. We consider a wireless network operating under two alternative interference models: (a) a combinatorial model involving independent set constraints and (b) the standard SINR (signal to interference noise ratio) model. We show that unless NP ⊆ BPP (or P = NP for the case of determistic arrivals and deterministic policies), and even if the required throughput is a very small fraction of the network's capacity, there does not exist a low-delay policy whose computation per time step scales polynomially with the number of queues. In particular, the average delay of Tassiulas' randomized algorithm must grow super-polynomially. To establish our results, we employ a clever graph transformation introduced by Lund and Yannakakis (1994).en_US
dc.description.sponsorshipNational Science Foundation (U.S.). (Grant number CCF-0728554)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/tit.2011.2168897en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleHardness of Low Delay Network Schedulingen_US
dc.typeArticleen_US
dc.identifier.citationShah, Devavrat, David N. C. Tse, and John N. Tsitsiklis. “Hardness of Low Delay Network Scheduling.” IEEE Transactions on Information Theory 57.12 (2011): 7810–7817.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.approverShah, Devavrat
dc.contributor.mitauthorShah, Devavrat
dc.contributor.mitauthorTsitsiklis, John N.
dc.relation.journalIEEE Transactions on Information Theoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsShah, Devavrat; Tse, David N. C.; Tsitsiklis, John N.en
dc.identifier.orcidhttps://orcid.org/0000-0003-0737-3259
dc.identifier.orcidhttps://orcid.org/0000-0003-2658-8239
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record