MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Machine Learning and Traveling Repairman Problem

Author(s)
Tulabandhula, Theja; Rudin, Cynthia; Jaillet, Patrick
Thumbnail
DownloadJaillet_The machine learning.pdf (2.748Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The goal of the Machine Learning and Traveling Repairman Problem (ML&TRP) is to determine a route for a “repair crew,” which repairs nodes on a graph. The repair crew aims to minimize the cost of failures at the nodes, but the failure probabilities are not known and must be estimated. If there is uncertainty in the failure probability estimates, we take this uncertainty into account in an unusual way; from the set of acceptable models, we choose the model that has the lowest cost of applying it to the subsequent routing task. In a sense, this procedure agrees with a managerial goal, which is to show that the data can support choosing a low-cost solution.
Description
Second International Conference, ADT 2011, Piscataway, NJ, USA, October 26-28, 2011. Proceedings
Date issued
2011-10
URI
http://hdl.handle.net/1721.1/73935
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Sloan School of Management
Journal
Algorithmic Decision Theory
Publisher
Springer Berlin / Heidelberg
Citation
Tulabandhula, Theja, Cynthia Rudin, and Patrick Jaillet. “The Machine Learning and Traveling Repairman Problem.” Algorithmic Decision Theory. Ed. Ronen I. Brafman, Fred S. Roberts, & Alexis Tsoukiàs. LNCS Vol. 6992. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 262–276.
Version: Author's final manuscript
ISBN
978-3-642-24872-6
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.