Show simple item record

dc.contributor.authorBranavan, Satchuthanan R.
dc.contributor.authorSilver, David
dc.contributor.authorBarzilay, Regina
dc.date.accessioned2012-10-24T20:34:34Z
dc.date.available2012-10-24T20:34:34Z
dc.date.issued2011-07
dc.identifier.isbn978-1-57735-512-0
dc.identifier.isbn978-1-57735-516-8
dc.identifier.urihttp://hdl.handle.net/1721.1/74248
dc.description.abstractThis paper presents a new Monte-Carlo search algorithm for very large sequential decision-making problems. Our approach builds on the recent success of Monte-Carlo tree search algorithms, which estimate the value of states and actions from the mean outcome of random simulations. Instead of using a search tree, we apply non-linear regression, online, to estimate a state-action value function from the outcomes of random simulations. This value function generalizes between related states and actions, and can therefore provide more accurate evaluations after fewer simulations. We apply our Monte-Carlo search algorithm to the game of Civilization II, a challenging multi-agent strategy game with an enormous state space and around $10^{21}$ joint actions. We approximate the value function by a neural network, augmented by linguistic knowledge that is extracted automatically from the official game manual. We show that this non-linear value function is significantly more efficient than a linear value function. Our non-linear Monte-Carlo search wins 80\% of games against the handcrafted, built-in AI for Civilization II.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER grant IIS-0448168)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant IIS-0835652)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (DARPA Machine Reading Program (FA8750-09-C-0172))en_US
dc.description.sponsorshipMicrosoft Research (New Faculty Fellowship)en_US
dc.language.isoen_US
dc.publisherAAAI Press/International Joint Conferences on Artificial Intelligenceen_US
dc.relation.isversionofhttp://ijcai-11.iiia.csic.es/program/paper/1252en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleNon-Linear Monte-Carlo Search in Civilization IIen_US
dc.typeArticleen_US
dc.identifier.citationBranavan, S. R. K. David Silver, and Regina Barzilay. "Non-Linear Monte-Carlo Search in Civilization II." in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16–22 July 2011. p.2404.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.approverBarzilay, Regina
dc.contributor.mitauthorBranavan, Satchuthanan R.
dc.contributor.mitauthorBarzilay, Regina
dc.relation.journalProceedings of the Twenty-second International Joint Conference on Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsBranavan, S.R.K; Silver, David; Barzilay, Reginaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record