Show simple item record

dc.contributor.authorHarris, Todd J.
dc.contributor.authorGreen, Jordan J.
dc.contributor.authorFung, Peter W.
dc.contributor.authorLanger, Robert S
dc.contributor.authorAnderson, Daniel Griffith
dc.contributor.authorBhatia, Sangeeta N
dc.date.accessioned2012-12-07T21:12:49Z
dc.date.available2012-12-07T21:12:49Z
dc.date.issued2009-10
dc.date.submitted2009-08
dc.identifier.issn0142-9612
dc.identifier.issn1878-5905
dc.identifier.urihttp://hdl.handle.net/1721.1/75302
dc.descriptionAuthor Manuscript: 2010 August 1.en_US
dc.description.abstractThe use of biomaterials for gene delivery can potentially avoid many of the safety concerns with viral gene delivery. However, the efficacy of polymeric gene delivery methods is low, particularly in vivo. One significant concern is that the interior and exterior composition of polymeric gene delivery nanoparticles are often coupled, with a single polymer backbone governing all functions from biophysical properties of the polymer/DNA particle to DNA condensation and release. In this work we develop electrostatically adsorbed poly(glutamic acid)-based peptide coatings to alter the exterior composition of a core gene delivery particle and thereby affect tissue-specificity of gene delivery function in vivo. We find that with all coating formulations tested, the coatings reduce potential toxicity associated with uncoated cationic gene delivery nanoparticles following systemic injection. Particles coated with a low 2.5:1 peptide:DNA weight ratio (w/w) form large 2 μ sized particles in the presence of serum that can facilitate specific gene delivery to the liver. The same particles coated at a higher 20:1 w/w form small 200 nm particles in the presence of serum that can facilitate specific gene delivery to the spleen and bone marrow. Thus, variations in nanoparticle peptide coating density can alter the tissue-specificity of gene delivery in vivo.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (BRP: 1R01CA124427-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB 000244)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U54 CA119349-01)en_US
dc.description.sponsorshipDavid & Lucile Packard Foundation (Fellowship 1999-1453A)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.biomaterials.2009.10.012en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePMCen_US
dc.titleTissue-Specific Gene Delivery via Nanoparticle Coatingen_US
dc.typeArticleen_US
dc.identifier.citationHarris, Todd J. et al. “Tissue-specific Gene Delivery via Nanoparticle Coating.” Biomaterials 31.5 (2010): 998–1006.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorLanger, Robert
dc.contributor.mitauthorAnderson, Daniel G.
dc.contributor.mitauthorBhatia, Sangeeta N.
dc.relation.journalBiomaterialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHarris, Todd J.; Green, Jordan J.; Fung, Peter W.; Langer, Robert; Anderson, Daniel G.; Bhatia, Sangeeta N.en
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
dc.identifier.orcidhttps://orcid.org/0000-0002-1293-2097
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record