| dc.contributor.author | Teich, Malvin Carl | |
| dc.contributor.author | Abouraddy, Ayman F. | |
| dc.contributor.author | Giuseppe, G. Di | |
| dc.contributor.author | Yarnall, Timothy M. | |
| dc.contributor.author | Saleh, B. E. A. | |
| dc.date.accessioned | 2012-12-13T21:47:38Z | |
| dc.date.available | 2012-12-13T21:47:38Z | |
| dc.date.issued | 2012-11 | |
| dc.date.submitted | 2012-07 | |
| dc.identifier.issn | 1050-2947 | |
| dc.identifier.issn | 1094-1622 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/75730 | |
| dc.description.abstract | Increasing the information-carrying capacity of a single photon may be achieved by utilizing multiple degrees of freedom. We describe here an approach that utilizes two degrees of freedom to encode three qubits per photon: one in polarization and two in the spatial-parity symmetry of the transverse field. In this conception, a polarization-sensitive spatial light modulator corresponds to a three-qubit controlled-unitary gate with one control qubit (polarization) and two target (spatial-parity-symmetry) qubits. We describe the construction of controlled-not (cnot), [superscript n]\ cnot, controlled-phase, and Fredkin gates, and the preparation of one-photon, three-qubit Greenberger-Horne-Zeilinger (GHZ) and W states. This approach enables simple optical implementations of few-qubit tasks in quantum information processing. | en_US |
| dc.language.iso | en_US | |
| dc.publisher | American Physical Society | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevA.86.050303 | en_US |
| dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
| dc.source | APS | en_US |
| dc.title | Implementing one-photon three-qubit quantum gates using spatial light modulators | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Abouraddy, A. et al. “Implementing One-photon Three-qubit Quantum Gates Using Spatial Light Modulators.” Physical Review A 86.5 (2012). ©2012 American Physical Society | en_US |
| dc.contributor.department | Lincoln Laboratory | en_US |
| dc.contributor.mitauthor | Yarnall, Timothy M. | |
| dc.contributor.mitauthor | Abouraddy, Ayman F. | |
| dc.relation.journal | Physical Review A | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Abouraddy, A.; Di Giuseppe, G.; Yarnall, T.; Teich, M.; Saleh, B. | en |
| mit.license | PUBLISHER_POLICY | en_US |
| mit.metadata.status | Complete | |