Show simple item record

dc.contributor.authorCziczo, Daniel James
dc.contributor.authorPierce, J. R.
dc.contributor.authorLeaitch, W. R.
dc.contributor.authorLiggio, J.
dc.contributor.authorWestervelt, D. M.
dc.contributor.authorWainwright, C. D.
dc.contributor.authorAbbatt, Jonathan P. D.
dc.contributor.authorAhlm, L.
dc.contributor.authorAl-Basheer, W.
dc.contributor.authorHayden, K. L.
dc.contributor.authorLee, A. K. Y.
dc.contributor.authorLi, S. -M.
dc.contributor.authorRussell, L. M.
dc.contributor.authorSjostedt, S. J.
dc.contributor.authorStrawbridge, K. B.
dc.contributor.authorTravis, M.
dc.contributor.authorVlasenko, A.
dc.contributor.authorWentzell, J. J. B.
dc.contributor.authorWiebe, H. A.
dc.contributor.authorWong, J. P. S.
dc.contributor.authorMacdonald, A. M.
dc.date.accessioned2012-12-17T21:51:05Z
dc.date.available2012-12-17T21:51:05Z
dc.date.issued2012-03
dc.date.submitted2012-04
dc.identifier.issn1680-7324
dc.identifier.issn1680-7316
dc.identifier.urihttp://hdl.handle.net/1721.1/75753
dc.description.abstractThe Whistler Aerosol and Cloud Study (WACS 2010), included intensive measurements of trace gases and particles at two sites on Whistler Mountain. Between 6–11 July 2010 there was a sustained high-pressure system over the region with cloud-free conditions and the highest temperatures of the study. During this period, the organic aerosol concentrations rose from <1 to ~6 μg m[superscript −3]. Precursor gas and aerosol composition measurements show that these organics were almost entirely of secondary biogenic nature. Throughout 6–11 July, the anthropogenic influence was minimal with sulfate concentrations <0.2 μg m[superscript −3] and SO[subscript 2] mixing ratios ≈0.05–0.1 ppbv. Thus, this case provides excellent conditions to probe the role of biogenic secondary organic aerosol in aerosol microphysics. Although SO[subscript 2] mixing ratios were relatively low, companion box-model simulations show that nucleation and growth may be modeled accurately if J[subscript nuc]=3×10[superscript −7] [H[subscript 2]SO[subscript 4]] and the organics are treated as effectively non-volatile. Due to the low condensation sink and the fast condensation rate of organics, the nucleated particles grew rapidly (2–5 nm h[superscript −1]) with a 10–25% probability of growing to CCN sizes (100 nm) in the first two days before being scavenged by coagulation with larger particles. The nucleated particles were observed to ultimately grow to ~200 nm after three days. Comparisons of size-distribution with CCN data show that particle hygroscopicity (κ) was ~0.1 for particles larger 150 nm, but for smaller particles near 100 nm the κ value decreased near midway through the period from 0.17 to less than 0.06. In this environment of little anthropogenic influence and low SO[subscript 2], the rapid growth rates of the regionally nucleated particles – due to condensation of biogenic SOA – results in an unusually high efficiency of conversion of the nucleated particles to CCN. Consequently, despite the low SO[subscript 2], nucleation/growth appear to be the dominant processes controlling particle number concentrations.en_US
dc.language.isoen_US
dc.publisherCopernicus GmbHen_US
dc.relation.isversionofhttp://dx.doi.org/10.5194/acpd-11-28499-2011en_US
dc.rightsCreative Commons Attribution 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceProf. Cziczo via Chris Sherratten_US
dc.titleNucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valleyen_US
dc.typeArticleen_US
dc.identifier.citationPierce, J. R. et al. “Nucleation and Condensational Growth to CCN Sizes During a Sustained Pristine Biogenic SOA Event in a Forested Mountain Valley.” Atmospheric Chemistry and Physics Discussions 11.10 (2011): 28499–28544.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.approverCziczo, Daniel
dc.contributor.mitauthorCziczo, Daniel James
dc.relation.journalAtmospheric Chemistry and Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsPierce, J. R.; Leaitch, W. R.; Liggio, J.; Westervelt, D. M.; Wainwright, C. D.; Abbatt, J. P. D.; Ahlm, L.; Al-Basheer, W.; Cziczo, D. J.; Hayden, K. L.; Lee, A. K. Y.; Li, S.-M.; Russell, L. M.; Sjostedt, S. J.; Strawbridge, K. B.; Travis, M.; Vlasenko, A.; Wentzell, J. J. B.; Wiebe, H. A.; Wong, J. P. S.; Macdonald, A. M.en
dc.identifier.orcidhttps://orcid.org/0000-0003-1851-8740
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record