Show simple item record

dc.contributor.authorDryden, Emily B.
dc.contributor.authorSena-Dias, Rosa Isabel
dc.contributor.authorGuillemin, Victor W.
dc.date.accessioned2013-08-26T20:09:35Z
dc.date.available2013-08-26T20:09:35Z
dc.date.issued2012-08
dc.date.submitted2011-08
dc.identifier.issn00018708
dc.identifier.issn1090-2082
dc.identifier.urihttp://hdl.handle.net/1721.1/80280
dc.descriptionOriginal manuscript July 5, 2011en_US
dc.description.abstractLet O[superscript 2n] be a symplectic toric orbifold with a fixed T[superscript n]-action and with a toric Kähler metric g. In [10] we explored whether, when O is a manifold, the equivariant spectrum of the Laplace operator Δ[subscript g] on C[superscript ∞](O) determines O up to symplectomorphism. In the setting of toric orbifolds we significantly improve upon our previous results and show that a generic toric orbifold is determined by its equivariant spectrum, up to two possibilities. This involves developing the asymptotic expansion of the heat trace on an orbifold in the presence of an isometry. We also show that the equivariant spectrum determines whether the toric Kähler metric has constant scalar curvature.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1005696)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.aim.2012.06.018en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleEquivariant inverse spectral theory and toric orbifoldsen_US
dc.typeArticleen_US
dc.identifier.citationDryden, Emily B., Victor Guillemin, and Rosa Sena-Dias. “Equivariant inverse spectral theory and toric orbifolds.” Advances in Mathematics 231, no. 3 4 (October 2012): 1271-1290.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorSena-Dias, Rosa Isabelen_US
dc.contributor.mitauthorGuillemin, Victor W.en_US
dc.relation.journalAdvances in Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDryden, Emily B.; Guillemin, Victor; Sena-Dias, Rosaen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2641-1097
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record