MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Complete Characterization of the Gap between Convexity and SOS-Convexity

Author(s)
Ahmadi, Amir Ali; Parrilo, Pablo A.
Thumbnail
DownloadAhmadi_Complete-Characterization.pdf (275.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials, via the definition of convexity, its first order characterization, and its second order characterization, are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming, whereas deciding convexity is NP-hard. If we denote the set of convex and sos-convex polynomials in $n$ variables of degree $d$ with $\tilde{C}_{n,d}$ and $\tilde{\Sigma C}_{n,d}$ respectively, then our main contribution is to prove that $\tilde{C}_{n,d}=\tilde{\Sigma C}_{n,d}$ if and only if $n=1$ or $d=2$ or $(n,d)=(2,4)$. We also present a complete characterization for forms (homogeneous polynomials) except for the case $(n,d)=(3,4)$, which is joint work with Blekherman and is to be published elsewhere. Our result states that the set $C_{n,d}$ of convex forms in $n$ variables of degree $d$ equals the set $\Sigma C_{n,d}$ of sos-convex forms if and only if $n=2$ or $d=2$ or $(n,d)=(3,4)$. To prove these results, we present in particular explicit examples of polynomials in $\tilde{C}_{2,6}\setminus\tilde{\Sigma C}_{2,6}$ and $\tilde{C}_{3,4}\setminus\tilde{\Sigma C}_{3,4}$ and forms in $C_{3,6}\setminus\Sigma C_{3,6}$ and $C_{4,4}\setminus\Sigma C_{4,4,}$ and a general procedure for constructing forms in $C_{n,d+2}\setminus\Sigma C_{n,d+2}$ from nonnegative but not sos forms in $n$ variables and degree $d$. Although for disparate reasons, the remarkable outcome is that convex polynomials (resp., forms) are sos-convex exactly in cases where nonnegative polynomials (resp., forms) are sums of squares, as characterized by Hilbert.
Date issued
2013-05
URI
http://hdl.handle.net/1721.1/81433
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
SIAM Journal on Optimization
Publisher
Society for Industrial and Applied Mathematics
Citation
Ahmadi, Amir Ali, and Pablo A. Parrilo. “A Complete Characterization of the Gap between Convexity and SOS-Convexity.” SIAM Journal on Optimization 23, no. 2 (April 4, 2013): 811-833. © 2013 Society for Industrial and Applied Mathematics
Version: Final published version
ISSN
1052-6234
1095-7189

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.