MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On-chip networks for manycore architecture

Author(s)
Cho, Myong Hyon, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (12.33Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Srinivas Devadas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Over the past decade, increasing the number of cores on a single processor has successfully enabled continued improvements of computer performance. Further scaling these designs to tens and hundreds of cores, however, still presents a number of hard problems, such as scalability, power efficiency and effective programming models. A key component of manycore systems is the on-chip network, which faces increasing efficiency demands as the number of cores grows. In this thesis, we present three techniques for improving the efficiency of on-chip interconnects. First, we present PROM (Path-based, Randomized, Oblivious, and Minimal routing) and BAN (Bandwidth Adaptive Networks), techniques that offer efficient intercore communication for bandwith-constrained networks. Next, we present ENC (Exclusive Native Context), the first deadlock-free, fine-grained thread migration protocol developed for on-chip networks. ENC demonstrates that a simple and elegant technique in the on-chip network can provide critical functional support for higher-level application and system layers. Finally, we provide a realistic context by sharing our hands-on experience in the physical implementation of the on-chip network for the Execution Migration Machine, an ENC-based 110-core processor fabricated in 45nm ASIC technology.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 109-116).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/84885
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.