Show simple item record

dc.contributor.advisorSrinivas Devadas.en_US
dc.contributor.authorCho, Myong Hyon, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2014-02-10T16:58:26Z
dc.date.available2014-02-10T16:58:26Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/84885
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 109-116).en_US
dc.description.abstractOver the past decade, increasing the number of cores on a single processor has successfully enabled continued improvements of computer performance. Further scaling these designs to tens and hundreds of cores, however, still presents a number of hard problems, such as scalability, power efficiency and effective programming models. A key component of manycore systems is the on-chip network, which faces increasing efficiency demands as the number of cores grows. In this thesis, we present three techniques for improving the efficiency of on-chip interconnects. First, we present PROM (Path-based, Randomized, Oblivious, and Minimal routing) and BAN (Bandwidth Adaptive Networks), techniques that offer efficient intercore communication for bandwith-constrained networks. Next, we present ENC (Exclusive Native Context), the first deadlock-free, fine-grained thread migration protocol developed for on-chip networks. ENC demonstrates that a simple and elegant technique in the on-chip network can provide critical functional support for higher-level application and system layers. Finally, we provide a realistic context by sharing our hands-on experience in the physical implementation of the on-chip network for the Execution Migration Machine, an ENC-based 110-core processor fabricated in 45nm ASIC technology.en_US
dc.description.statementofresponsibilityby Myong Hyon Cho.en_US
dc.format.extent116 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleOn-chip networks for manycore architectureen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc868687426en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record