Show simple item record

dc.contributor.authorBranavan, Satchuthanan R.
dc.contributor.authorKushman, Nate
dc.contributor.authorLei, Tao
dc.contributor.authorBarzilay, Regina
dc.date.accessioned2014-03-28T16:08:14Z
dc.date.available2014-03-28T16:08:14Z
dc.date.issued2012-07
dc.identifier.isbn978-1-937284-24-4
dc.identifier.urihttp://hdl.handle.net/1721.1/85953
dc.description.abstractComprehending action preconditions and effects is an essential step in modeling the dynamics of the world. In this paper, we express the semantics of precondition relations extracted from text in terms of planning operations. The challenge of modeling this connection is to ground language at the level of relations. This type of grounding enables us to create high-level plans based on language abstractions. Our model jointly learns to predict precondition relations from text and to perform high-level planning guided by those relations. We implement this idea in the reinforcement learning framework using feedback automatically obtained from plan execution attempts. When applied to a complex virtual world and text describing that world, our relation extraction technique performs on par with a supervised baseline, yielding an F-measure of 66% compared to the baseline’s 65%. Additionally, we show that a high-level planner utilizing these extracted relations significantly outperforms a strong, text unaware baseline – successfully completing 80% of planning tasks as compared to 69% for the baseline.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Grant IIS-0448168)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Machine Reading Program (FA8750-09-C-0172, PO#4910018860)en_US
dc.description.sponsorshipBattelle Memorial Institute (PO#300662)en_US
dc.language.isoen_US
dc.publisherThe Association for Computational Linguisticsen_US
dc.relation.isversionofhttp://aclweb.org/anthology/P/P12/en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleLearning High-Level Planning from Texten_US
dc.typeArticleen_US
dc.identifier.citationBranavan, S. R. K., Nate Kushman, Tao Lei, and Regina Barzilay. 2012. Learning High-Level Planning from Text. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju, Republic of Korea, 8-14 July 2012, 126–135.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorBranavan, Satchuthanan R.en_US
dc.contributor.mitauthorKushman, Nateen_US
dc.contributor.mitauthorLei, Taoen_US
dc.contributor.mitauthorBarzilay, Reginaen_US
dc.relation.journalProceedings of the 50th Annual Meeting of the Association for Computational Linguisticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBranavan, S. R. K.; Kushman, Nate; Lei, Tao; Barzilay, Reginaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9254-8422
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0003-4644-3088
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record