MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Behavior of the Threshold Operator for Bandlimited Functions

Author(s)
Boche, Holger; Monich, Ullrich
Thumbnail
DownloadMonich_Threshold operator.pdf (304.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
One interesting question is how the good local approximation behavior of the Shannon sampling series for the Paley–Wiener space PW[1 over π] is affected if the samples are disturbed by the non-linear threshold operator. This operator, which is important in many applications, sets all samples whose absolute value is smaller than some threshold to zero. In this paper we analyze a generalization of this problem, in which not the Shannon sampling series is disturbed by the threshold operator but a more general system approximation process, were a stable linear time-invariant system is involved. We completely characterize the stable linear time-invariant systems that, for some functions in PW[1 over π], lead to a diverging approximation process as the threshold is decreased to zero. Further, we show that if there exists one such function then the set of functions for which divergence occurs is in fact a residual set. We study the pointwise behavior as well as the behavior of the L[superscript ∞]-norm of the approximation process. It is known that oversampling does not lead to stable approximation processes in the presence of thresholding. An interesting open problem is the characterization of the systems that can be stably approximated with oversampling.
Date issued
2013-01
URI
http://hdl.handle.net/1721.1/85974
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Journal of Fourier Analysis and Applications
Publisher
Springer-Verlag
Citation
Boche, Holger, and Ullrich J. Mönich. “On the Behavior of the Threshold Operator for Bandlimited Functions.” J Fourier Anal Appl 19, no. 1 (February 2013): 1–19.
Version: Author's final manuscript
ISSN
1069-5869
1531-5851

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.