MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

openPDS: Protecting the Privacy of Metadata through SafeAnswers

Author(s)
de Montjoye, Yves-Alexandre; Shmueli, Erez; Wang, Samuel S.; Pentland, Alex Paul
Thumbnail
DownloadPentland_openPDS Protecting.pdf (1.498Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The rise of smartphones and web services made possible the large-scale collection of personal metadata. Information about individuals' location, phone call logs, or web-searches, is collected and used intensively by organizations and big data researchers. Metadata has however yet to realize its full potential. Privacy and legal concerns, as well as the lack of technical solutions for personal metadata management is preventing metadata from being shared and reconciled under the control of the individual. This lack of access and control is furthermore fueling growing concerns, as it prevents individuals from understanding and managing the risks associated with the collection and use of their data. Our contribution is two-fold: (1) we describe openPDS, a personal metadata management framework that allows individuals to collect, store, and give fine-grained access to their metadata to third parties. It has been implemented in two field studies; (2) we introduce and analyze SafeAnswers, a new and practical way of protecting the privacy of metadata at an individual level. SafeAnswers turns a hard anonymization problem into a more tractable security one. It allows services to ask questions whose answers are calculated against the metadata instead of trying to anonymize individuals' metadata. The dimensionality of the data shared with the services is reduced from high-dimensional metadata to low-dimensional answers that are less likely to be re-identifiable and to contain sensitive information. These answers can then be directly shared individually or in aggregate. openPDS and SafeAnswers provide a new way of dynamically protecting personal metadata, thereby supporting the creation of smart data-driven services and data science research.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/88264
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Journal
PLoS ONE
Publisher
Public Library of Science
Citation
de Montjoye, Yves-Alexandre, Erez Shmueli, Samuel S. Wang, and Alex Paul Pentland.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.