Nanophotonic quantum phase switch with a single atom
Author(s)
Tiecke, T. G.; Thompson, J. D.; de Leon, N. P.; Liu, L. R.; Lukin, M. D.; Vuletic, Vladan; ... Show more Show less
Downloadnanophotonic quantum phase switch.pdf (3.889Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
By analogy to transistors in classical electronic circuits, quantum optical switches are important elements of quantum circuits and quantum networks. Operated at the fundamental limit where a single quantum of light or matter controls another field or material system, such a switch may enable applications such as long-distance quantum communication, distributed quantum information processing and metrology, and the exploration of novel quantum states of matter. Here, by strongly coupling a photon to a single atom trapped in the near field of a nanoscale photonic crystal cavity, we realize a system in which a single atom switches the phase of a photon and a single photon modifies the atom’s phase. We experimentally demonstrate an atom-induced optical phase shift that is nonlinear at the two-photon level, a photon number router that separates individual photons and photon pairs into different output modes, and a single-photon switch in which a single ‘gate’ photon controls the propagation of a subsequent probe field. These techniques pave the way to integrated quantum nanophotonic networks involving multiple atomic nodes connected by guided light.
Date issued
2014-04Department
Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Research Laboratory of ElectronicsJournal
Nature
Publisher
Nature Publishing Group
Citation
Tiecke, T. G., J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin. “Nanophotonic Quantum Phase Switch with a Single Atom.” Nature 508, no. 7495 (April 9, 2014): 241–244.
Version: Author's final manuscript
ISSN
0028-0836
1476-4687