Show simple item record

dc.contributor.authorKim, Been
dc.contributor.authorRudin, Cynthia
dc.contributor.authorShah, Julie A.
dc.date.accessioned2014-11-26T14:48:31Z
dc.date.available2014-11-26T14:48:31Z
dc.date.issued2014-12
dc.identifier.urihttp://hdl.handle.net/1721.1/91918
dc.description.abstractWe present the Bayesian Case Model (BCM), a general framework for Bayesian case-based reasoning (CBR) and prototype classification and clustering. BCM brings the intuitive power of CBR to a Bayesian generative framework. The BCM learns prototypes, the “quintessential” observations that best represent clusters in a dataset, by performing joint inference on cluster labels, prototypes and important features. Simultaneously, BCM pursues sparsity by learning subspaces, the sets of features that play important roles in the characterization of the prototypes. The prototype and subspace representation provides quantitative benefits in interpretability while preserving classification accuracy. Human subject experiments verify statistically significant improvements to participants’ understanding when using explanations produced by BCM, compared to those given by prior art.en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundation, Inc.en_US
dc.relation.isversionofhttp://papers.nips.cc/paper/5313-the-bayesian-case-model-a-generative-approach-for-case-based-reasoning-and-prototype-classificationen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceShahen_US
dc.titleThe Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classificationen_US
dc.typeArticleen_US
dc.identifier.citationKim, Been, Cynthia Rudin, and Julie Shah. "The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification." Advances in Neural Information Processing Systems 27 (NIPS 2014), pp.1-9.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorKim, Beenen_US
dc.contributor.mitauthorRudin, Cynthiaen_US
dc.contributor.mitauthorShah, Julie A.en_US
dc.relation.journalProceedings of the 2014 Neural Information Processing Systems Foundation Conference (NIPS 2014)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsKim, Been; Rudin, Cynthia; Shah, Julieen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1338-8107
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record