Show simple item record

dc.contributor.authorYang, David H.
dc.date.accessioned2014-11-26T17:20:18Z
dc.date.available2014-11-26T17:20:18Z
dc.date.issued2014-11
dc.date.submitted2014-07
dc.identifier.issn2197-9847
dc.identifier.urihttp://hdl.handle.net/1721.1/91930
dc.description.abstractPurpose: We give a new interpretation of Koszul cohomology, which is equivalent under the Bridgeland-King-Reid equivalence to Voisin's Hilbert scheme interpretation in dimensions 1 and 2 but is different in higher dimensions. Methods: We show that an explicit resolution of a certain S[subscript n]-equivariant sheaf is equivalent to a resolution appearing in the theory of Koszul cohomology. Results: Our methods easily show that the dimension K[subscript p,q](B,L) is a polynomial in d for L=dA+P with A ample and d large enough. Conclusions: This interpretation allows us to extract various pieces of information about asymptotic properties Kp,q for fixed p,q.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Research Experience for Undergraduates (Program)en_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/s40687-014-0010-9en_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.titleS[subscript n]-equivariant sheaves and Koszul cohomologyen_US
dc.typeArticleen_US
dc.identifier.citationYang, David H. “S n -Equivariant Sheaves and Koszul Cohomology.” Mathematical Sciences 1, no. 1 (December 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorYang, David H.en_US
dc.relation.journalResearch in the Mathematical Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2014-11-20T16:05:02Z
dc.language.rfc3066en
dc.rights.holderDavid H Yang et al.; licensee BioMed Central Ltd.
dspace.orderedauthorsYang, David Hen_US
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record