Show simple item record

dc.contributor.authorSteel, Bradley C.
dc.contributor.authorBai, Fan
dc.contributor.authorSowa, Yoshiyuki
dc.contributor.authorBilyard, Thomas
dc.contributor.authorMueller, David M.
dc.contributor.authorBerry, Richard M.
dc.contributor.authorJones, Nick S.
dc.contributor.authorLittle, Max
dc.date.accessioned2014-12-16T20:48:12Z
dc.date.available2014-12-16T20:48:12Z
dc.date.issued2011-07
dc.date.submitted2011-01
dc.identifier.issn00063495
dc.identifier.issn1542-0086
dc.identifier.urihttp://hdl.handle.net/1721.1/92347
dc.description.abstractWe report statistical time-series analysis tools providing improvements in the rapid, precision extraction of discrete state dynamics from time traces of experimental observations of molecular machines. By building physical knowledge and statistical innovations into analysis tools, we provide techniques for estimating discrete state transitions buried in highly correlated molecular noise. We demonstrate the effectiveness of our approach on simulated and real examples of steplike rotation of the bacterial flagellar motor and the F1-ATPase enzyme. We show that our method can clearly identify molecular steps, periodicities and cascaded processes that are too weak for existing algorithms to detect, and can do so much faster than existing algorithms. Our techniques represent a step in the direction toward automated analysis of high-sample-rate, molecular-machine dynamics. Modular, open-source software that implements these techniques is provided.en_US
dc.description.sponsorshipWellcome Trust (London, England) (Massachusetts Institute of Technology. Postdoctoral Fellowship WT090651MF)en_US
dc.description.sponsorshipBiotechnology and Biological Sciences Research Council (Great Britain) (Engineering and Physical Sciences Research Council. Grant BBD0201901)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.bpj.2011.05.070en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleSteps and Bumps: Precision Extraction of Discrete States of Molecular Machinesen_US
dc.typeArticleen_US
dc.identifier.citationLittle, Max A., Bradley C. Steel, Fan Bai, Yoshiyuki Sowa, Thomas Bilyard, David M. Mueller, Richard M. Berry, and Nick S. Jones. “Steps and Bumps: Precision Extraction of Discrete States of Molecular Machines.” Biophysical Journal 101, no. 2 (July 2011): 477–485. © 2011 Biophysical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorLittle, Max Andrewen_US
dc.relation.journalBiophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLittle, Max A.; Steel, Bradley C.; Bai, Fan; Sowa, Yoshiyuki; Bilyard, Thomas; Mueller, David M.; Berry, Richard M.; Jones, Nick S.en_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record