Show simple item record

dc.contributor.authorLaxpati, Nealen G.
dc.contributor.authorMahmoudi, Babak
dc.contributor.authorGutekunst, Claire-Anne
dc.contributor.authorNewman, Jonathan P.
dc.contributor.authorZeller-Townson, Riley
dc.contributor.authorGross, Robert E.
dc.date.accessioned2014-12-23T20:47:19Z
dc.date.available2014-12-23T20:47:19Z
dc.date.issued2014-10
dc.identifier.issn1662-6443
dc.identifier.issn1662-453X
dc.identifier.urihttp://hdl.handle.net/1721.1/92487
dc.description.abstractOptogenetic channels have greatly expanded neuroscience’s experimental capabilities, enabling precise genetic targeting and manipulation of neuron subpopulations in awake and behaving animals. However, many barriers to entry remain for this technology – including low-cost and effective hardware for combined optical stimulation and electrophysiologic recording. To address this, we adapted the open-source NeuroRighter multichannel electrophysiology platform for use in awake and behaving rodents in both open and closed-loop stimulation experiments. Here, we present these cost-effective adaptations, including commercially available LED light sources; custom-made optical ferrules; 3D printed ferrule hardware and software to calibrate and standardize output intensity; and modifications to commercially available electrode arrays enabling stimulation proximally and distally to the recording target. We then demonstrate the capabilities and versatility of these adaptations in several open and closed-loop experiments, demonstrate spectrographic methods of analyzing the results, as well as discuss artifacts of stimulation.en_US
dc.description.sponsorshipEmory University. School of Medicine (Emory Neurosciences Initiative seed grant)en_US
dc.description.sponsorshipAmerican Epilepsy Societyen_US
dc.description.sponsorshipEpilepsy Foundation of America (Predoctoral fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF GRFP Fellowship 08-593)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF IGERT Fellowship DGE-0333411)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF EFRI #1238097)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH 1R01NS079757-01)en_US
dc.description.sponsorshipAmerican Society for Engineering Education (SMART Fellowship)en_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fneng.2014.00040en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiers Research Foundationen_US
dc.titleReal-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighteren_US
dc.typeArticleen_US
dc.identifier.citationLaxpati, Nealen G., Babak Mahmoudi, Claire-Anne Gutekunst, Jonathan P. Newman, Riley Zeller-Townson, and Robert E. Gross. “Real-Time in Vivo Optogenetic Neuromodulation and Multielectrode Electrophysiologic Recording with NeuroRighter.” Frontiers in Neuroengineering 7 (October 29, 2014).en_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorNewman, Jonathan P.en_US
dc.relation.journalFrontiers in Neuroengineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLaxpati, Nealen G.; Mahmoudi, Babak; Gutekunst, Claire-Anne; Newman, Jonathan P.; Zeller-Townson, Riley; Gross, Robert E.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5425-3340
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record