Show simple item record

dc.contributor.authorYamins, Daniel L. K.
dc.contributor.authorHong, Ha
dc.contributor.authorCadieu, Charles
dc.contributor.authorSolomon, Ethan A.
dc.contributor.authorSeibert, Darren Allen
dc.contributor.authorDiCarlo, James
dc.date.accessioned2015-01-12T16:36:11Z
dc.date.available2015-01-12T16:36:11Z
dc.date.issued2014-05
dc.date.submitted2014-03
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/92787
dc.description.abstractThe ventral visual stream underlies key human visual object recognition abilities. However, neural encoding in the higher areas of the ventral stream remains poorly understood. Here, we describe a modeling approach that yields a quantitatively accurate model of inferior temporal (IT) cortex, the highest ventral cortical area. Using high-throughput computational techniques, we discovered that, within a class of biologically plausible hierarchical neural network models, there is a strong correlation between a model’s categorization performance and its ability to predict individual IT neural unit response data. To pursue this idea, we then identified a high-performing neural network that matches human performance on a range of recognition tasks. Critically, even though we did not constrain this model to match neural data, its top output layer turns out to be highly predictive of IT spiking responses to complex naturalistic images at both the single site and population levels. Moreover, the model’s intermediate layers are highly predictive of neural responses in the V4 cortex, a midlevel visual area that provides the dominant cortical input to IT. These results show that performance optimization—applied in a biologically appropriate model class—can be used to build quantitative predictive models of neural processing.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IS 0964269)en_US
dc.description.sponsorshipNational Eye Institute (Grant R01-EY014970)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1403112111en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titlePerformance-optimized hierarchical models predict neural responses in higher visual cortexen_US
dc.typeArticleen_US
dc.identifier.citationYamins, Daniel L. K., Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James J. DiCarlo. “Performance-Optimized Hierarchical Models Predict Neural Responses in Higher Visual Cortex.” Proceedings of the National Academy of Sciences 111, no. 23 (May 8, 2014): 8619–8624.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorYamins, Daniel L. K.en_US
dc.contributor.mitauthorHong, Haen_US
dc.contributor.mitauthorCadieu, Charlesen_US
dc.contributor.mitauthorSolomon, Ethan A.en_US
dc.contributor.mitauthorSeibert, Darren Allenen_US
dc.contributor.mitauthorDiCarlo, Jamesen_US
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsYamins, Daniel L. K.; Hong, Ha; Cadieu, Charles F.; Solomon, Ethan A.; Seibert, Darren; DiCarlo, James J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6003-3280
dc.identifier.orcidhttps://orcid.org/0000-0002-1592-5896
dc.identifier.orcidhttps://orcid.org/0000-0001-7779-2219
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record