Show simple item record

dc.contributor.authorCastro, Carlos E.
dc.contributor.authorDong, Jijun
dc.contributor.authorLindquist, Susan
dc.contributor.authorLang, Matthew J.
dc.contributor.authorBoyce, Mary Cunningham
dc.contributor.authorLang, Matthew J.
dc.date.accessioned2015-03-04T18:53:07Z
dc.date.available2015-03-04T18:53:07Z
dc.date.issued2011-07
dc.date.submitted2011-02
dc.identifier.issn00063495
dc.identifier.issn1542-0086
dc.identifier.urihttp://hdl.handle.net/1721.1/95809
dc.description.abstractAmyloid fibers play important roles in many human diseases and natural biological processes and have immense potential as novel nanomaterials. We explore the physical properties of polymorphic amyloid fibers formed by yeast prion protein Sup35. Amyloid fibers that conferred distinct prion phenotypes ([PSI[superscript +]]), strong (S) versus weak (W) nonsense suppression, displayed different physical properties. Both S[PSI[superscript +]] and W[PSI[superscript +]] fibers contained structural inhomogeneities, specifically local regions of static curvature in S[PSI[superscript +]] fibers and kinks and self-cross-linking in W[PSI[superscript +]] fibers. Force-extension experiments with optical tweezers revealed persistence lengths of 1.5 μm and 3.3 μm and axial stiffness of 5600 pN and 9100 pN for S[PSI[superscript +]] and W[PSI[superscript +]] fibers, respectively. Thermal fluctuation analysis confirmed the twofold difference in persistence length between S[PSI[superscript +]] and W[PSI[superscript +]] fibers and revealed a torsional stiffness of kinks and cross-links of ~100–200 pN·nm/rad.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant GM025874)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Career Award 0643745)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R21CA133576)en_US
dc.description.sponsorshipAmerican Heart Association (Fellowship 0725849T)en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technologyen_US
dc.description.sponsorshipNational Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (Grant T32EB006348)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.bpj.2011.06.016en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titlePhysical Properties of Polymorphic Yeast Prion Amyloid Fibersen_US
dc.typeArticleen_US
dc.identifier.citationCastro, Carlos E., Jijun Dong, Mary C. Boyce, Susan Lindquist, and Matthew J. Lang. “Physical Properties of Polymorphic Yeast Prion Amyloid Fibers.” Biophysical Journal 101, no. 2 (July 2011): 439–448. © 2011 Biophysical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentWhitehead Institute for Biomedical Researchen_US
dc.contributor.mitauthorBoyce, Mary Cunninghamen_US
dc.contributor.mitauthorLindquist, Susanen_US
dc.contributor.mitauthorLang, Matthew J.en_US
dc.contributor.mitauthorCastro, Carlos E.en_US
dc.relation.journalBiophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCastro, Carlos E.; Dong, Jijun; Boyce, Mary C.; Lindquist, Susan; Lang, Matthew J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4614-251X
dc.identifier.orcidhttps://orcid.org/0000-0003-1307-882X
dc.identifier.orcidhttps://orcid.org/0000-0002-2193-377X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record