Accurate Sound Localization in Reverberant Environments Is Mediated by Robust Encoding of Spatial Cues in the Auditory Midbrain
Author(s)
Devore, Sasha; Ihlefeld, Antje; Hancock, Kenneth E.; Shinn-Cunningham, Barbara; Delgutte, Bertrand
DownloadDevore-2009-Accurate Sound Local.pdf (1.142Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
In reverberant environments, acoustic reflections interfere with the direct sound arriving at a listener's ears, distorting the spatial cues for sound localization. Yet, human listeners have little difficulty localizing sounds in most settings. Because reverberant energy builds up over time, the source location is represented relatively faithfully during the early portion of a sound, but this representation becomes increasingly degraded later in the stimulus. We show that the directional sensitivity of single neurons in the auditory midbrain of anesthetized cats follows a similar time course, although onset dominance in temporal response patterns results in more robust directional sensitivity than expected, suggesting a simple mechanism for improving directional sensitivity in reverberation. In parallel behavioral experiments, we demonstrate that human lateralization judgments are consistent with predictions from a population rate model decoding the observed midbrain responses, suggesting a subcortical origin for robust sound localization in reverberant environments.
Date issued
2009-04Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Research Laboratory of ElectronicsJournal
Neuron
Publisher
Elsevier
Citation
Devore, Sasha, Antje Ihlefeld, Kenneth Hancock, Barbara Shinn-Cunningham, and Bertrand Delgutte. “Accurate Sound Localization in Reverberant Environments Is Mediated by Robust Encoding of Spatial Cues in the Auditory Midbrain.” Neuron 62, no. 1 (April 2009): 123–134. © 2009 Elsevier Inc.
Version: Final published version
ISSN
08966273
1097-4199