Show simple item record

dc.contributor.authorMonks, Maria
dc.date.accessioned2015-03-31T14:48:37Z
dc.date.available2015-03-31T14:48:37Z
dc.date.issued2009-05
dc.date.submitted2009-03
dc.identifier.issn0012365X
dc.identifier.urihttp://hdl.handle.net/1721.1/96272
dc.description.abstractAll continuous endomorphisms f[subscript ∞] of the shift dynamical system S on the 2-adic integers Z[subscript 2] are induced by some f : B[subscript n]→{0,1}, where n is a positive integer, B[subscript n] is the set of n-blocks over {0, 1}, and f[subscript ∞](x)=y[subscript 0]y[subscript 1]y[subscript 2]…f[subscript ∞](x) = y[subscript 0]y[subscript 1]y[subscript 2]… where for all i∈N, yi = f(x[subscript i]x[subscript i+1]…x[subscript i+n−1]). Define D:Z[subscript 2]→Z[subscript 2] to be the endomorphism of S induced by the map {(00,0),(01,1),(10,1),(11,0)} and V:Z[subscript 2]→Z[subscript 2] by V(x)=−1−x. We prove that D, V∘DV∘D, S, and V∘S are conjugate to S and are the only continuous endomorphisms of S whose parity vector function is solenoidal. We investigate the properties of D as a dynamical system, and use D to construct a conjugacy from the 3x+1 function T:Z[subscript 2]→Z[subscript 2] to a parity-neutral dynamical system. We also construct a conjugacy R from D to T. We apply these results to establish that, in order to prove the 3x+1 conjecture, it suffices to show that for any m∈Z[superscript +], there exists some n∈N such that R[superscript −1](m) has binary representation of the form [bar over x[subscript 0]x[subscript 1]…x[subscript 2n−1]] or [bar over x[subscript 0]x[subscript 1]x[subscript 2]…x[subscript 2n]].en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.disc.2009.04.006en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleEndomorphisms of the shift dynamical system, discrete derivatives, and applicationsen_US
dc.typeArticleen_US
dc.identifier.citationMonks, Maria. “Endomorphisms of the Shift Dynamical System, Discrete Derivatives, and Applications.” Discrete Mathematics 309, no. 16 (August 2009): 5196–5205. © 2009 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMonks, Mariaen_US
dc.relation.journalDiscrete Mathematicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMonks, Mariaen_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record