Show simple item record

dc.contributor.authorMajumder, Biswanath
dc.contributor.authorBaraneedharan, Ulaganathan
dc.contributor.authorThiyagarajan, Saravanan
dc.contributor.authorRadhakrishnan, Padhma
dc.contributor.authorNarasimhan, Harikrishna
dc.contributor.authorDhandapani, Muthu
dc.contributor.authorBrijwani, Nilesh
dc.contributor.authorPinto, Dency D.
dc.contributor.authorPrasath, Arun
dc.contributor.authorShanthappa, Basavaraja U.
dc.contributor.authorThayakumar, Allen
dc.contributor.authorSurendran, Rajagopalan
dc.contributor.authorBabu, Govind K.
dc.contributor.authorShenoy, Ashok M.
dc.contributor.authorKuriakose, Moni A.
dc.contributor.authorBergthold, Guillaume
dc.contributor.authorHorowitz, Peleg
dc.contributor.authorLoda, Massimo
dc.contributor.authorBeroukhim, Rameen
dc.contributor.authorAgarwal, Shivani
dc.contributor.authorSengupta, Shiladitya
dc.contributor.authorSundaram, Mallikarjun
dc.contributor.authorMajumder, Pradip K.
dc.date.accessioned2015-04-07T18:14:51Z
dc.date.available2015-04-07T18:14:51Z
dc.date.issued2015-02
dc.date.submitted2014-10
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/96406
dc.description.abstractPredicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine.en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms7169en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titlePredicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneityen_US
dc.typeArticleen_US
dc.identifier.citationMajumder, Biswanath, Ulaganathan Baraneedharan, Saravanan Thiyagarajan, Padhma Radhakrishnan, Harikrishna Narasimhan, Muthu Dhandapani, Nilesh Brijwani, et al. “Predicting Clinical Response to Anticancer Drugs Using an Ex Vivo Platform That Captures Tumour Heterogeneity.” Nature Communications 6 (February 27, 2015): 6169.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.mitauthorSengupta, Shiladityaen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMajumder, Biswanath; Baraneedharan, Ulaganathan; Thiyagarajan, Saravanan; Radhakrishnan, Padhma; Narasimhan, Harikrishna; Dhandapani, Muthu; Brijwani, Nilesh; Pinto, Dency D.; Prasath, Arun; Shanthappa, Basavaraja U.; Thayakumar, Allen; Surendran, Rajagopalan; Babu, Govind K.; Shenoy, Ashok M.; Kuriakose, Moni A.; Bergthold, Guillaume; Horowitz, Peleg; Loda, Massimo; Beroukhim, Rameen; Agarwal, Shivani; Sengupta, Shiladitya; Sundaram, Mallikarjun; Majumder, Pradip K.en_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record