dc.contributor.author | Chang, Shiou-chi | |
dc.contributor.author | Wu, Jie | |
dc.contributor.author | Delaney, James C. | |
dc.contributor.author | Li, Deyu | |
dc.contributor.author | Zhao, Linlin | |
dc.contributor.author | Christov, Plamen P. | |
dc.contributor.author | Yau, Emily | |
dc.contributor.author | Singh, Vipender | |
dc.contributor.author | Jost, Marco | |
dc.contributor.author | Marnett, Lawrence J. | |
dc.contributor.author | Rizzo, Carmelo J. | |
dc.contributor.author | Levine, Stuart S. | |
dc.contributor.author | Guengerich, F. Peter | |
dc.contributor.author | Essigmann, John M. | |
dc.contributor.author | Drennan, Catherine L | |
dc.contributor.author | Fedeles, Bogdan I | |
dc.date.accessioned | 2015-04-08T16:21:52Z | |
dc.date.available | 2015-04-08T16:21:52Z | |
dc.date.issued | 2015-04 | |
dc.date.submitted | 2015-03 | |
dc.identifier.issn | 0305-1048 | |
dc.identifier.issn | 1362-4962 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/96431 | |
dc.description.abstract | Etheno DNA adducts are a prevalent type of DNA damage caused by vinyl chloride (VC) exposure and oxidative stress. Etheno adducts are mutagenic and may contribute to the initiation of several pathologies; thus, elucidating the pathways by which they induce cellular transformation is critical. Although N[superscript 2],3-ethenoguanine (N[superscript 2],3-εG) is the most abundant etheno adduct, its biological consequences have not been well characterized in cells due to its labile glycosidic bond. Here, a stabilized 2′-fluoro-2′-deoxyribose analog of N[superscript 2],3-εG was used to quantify directly its genotoxicity and mutagenicity. A multiplex method involving next-generation sequencing enabled a large-scale in vivo analysis, in which both N[superscript 2],3-εG and its isomer 1,N[superscript 2]-ethenoguanine (1,N[superscript 2]-εG) were evaluated in various repair and replication backgrounds. We found that N[superscript 2],3-εG potently induces G to A transitions, the same mutation previously observed in VC-associated tumors. By contrast, 1,N[superscript 2]-εG induces various substitutions and frameshifts. We also found that N[superscript 2],3-εG is the only etheno lesion that cannot be repaired by AlkB, which partially explains its persistence. Both εG lesions are strong replication blocks and DinB, a translesion polymerase, facilitates the mutagenic bypass of both lesions. Collectively, our results indicate that N[superscript 2],3-εG is a biologically important lesion and may have a functional role in VC-induced or inflammation-driven carcinogenesis. | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (P30 ES002109) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (T32 ES007020) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (R37 CA080024) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (P01 CA026731) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (R02 GM69857) | en_US |
dc.language.iso | en_US | |
dc.publisher | Oxford University Press | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1093/nar/gkv243 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | en_US |
dc.source | OUP | en_US |
dc.title | Next-generation sequencing reveals the biological significance of the N[superscript 2],3-ethenoguanine lesion in vivo | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Chang, Shiou-chi, Bogdan I. Fedeles, Jie Wu, James C. Delaney, Deyu Li, Linlin Zhao, Plamen P. Christov, et al. “Next-Generation Sequencing Reveals the Biological Significance of the N[superscript 2],3-Ethenoguanine Lesion in Vivo.” Nucleic Acids Research (April 2, 2015). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Center for Environmental Health Sciences | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biological Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biology | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry | en_US |
dc.contributor.mitauthor | Drennan, Catherine L. | en_US |
dc.contributor.mitauthor | Chang, Shiou-chi | en_US |
dc.contributor.mitauthor | Fedeles, Bogdan I. | en_US |
dc.contributor.mitauthor | Delaney, James C. | en_US |
dc.contributor.mitauthor | Li, Deyu | en_US |
dc.contributor.mitauthor | Yau, Emily | en_US |
dc.contributor.mitauthor | Singh, Vipender | en_US |
dc.contributor.mitauthor | Essigmann, John M. | en_US |
dc.contributor.mitauthor | Levine, Stuart S. | en_US |
dc.contributor.mitauthor | Wu, Jie | en_US |
dc.relation.journal | Nucleic Acids Research | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Chang, Shiou-chi; Fedeles, Bogdan I.; Wu, Jie; Delaney, James C.; Li, Deyu; Zhao, Linlin; Christov, Plamen P.; Yau, Emily; Singh, Vipender; Jost, Marco; Drennan, Catherine L.; Marnett, Lawrence J.; Rizzo, Carmelo J.; Levine, Stuart S.; Guengerich, F. Peter; Essigmann, John M. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-0989-8115 | |
dc.identifier.orcid | https://orcid.org/0000-0001-5486-2755 | |
dc.identifier.orcid | https://orcid.org/0000-0001-6159-0778 | |
dc.identifier.orcid | https://orcid.org/0000-0002-8241-4834 | |
dc.identifier.orcid | https://orcid.org/0000-0002-2196-5691 | |
dc.identifier.orcid | https://orcid.org/0000-0002-2494-7763 | |
mit.license | PUBLISHER_CC | en_US |
mit.metadata.status | Complete | |