High-Throughput Screening Platform for Engineered Nanoparticle-Mediated Genotoxicity Using CometChip Technology
Author(s)
Watson, Christa; Ge, Jing; Cohen, Joel; Pyrgiotakis, Georgios; Engelward, Bevin P.; Demokritou, Philip; ... Show more Show less
DownloadWatson-2014-High-throughput.pdf (3.477Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The likelihood of intentional and unintentional engineered nanoparticle (ENP) exposure has dramatically increased due to the use of nanoenabled products. Indeed, ENPs have been incorporated in many useful products and have enhanced our way of life. However, there are many unanswered questions about the consequences of nanoparticle exposures, in particular, with regard to their potential to damage the genome and thus potentially promote cancer. In this study, we present a high-throughput screening assay based upon the recently developed CometChip technology, which enables evaluation of single-stranded DNA breaks, abasic sites, and alkali-sensitive sites in cells exposed to ENPs. The strategic microfabricated, 96-well design and automated processing improves efficiency, reduces processing time, and suppresses user bias in comparison to the standard comet assay. We evaluated the versatility of this assay by screening five industrially relevant ENP exposures (SiO[subscript 2], ZnO, Fe[subscript 2]O[subscript 3], Ag, and CeO[subscript 2]) on both suspension human lymphoblastoid (TK6) and adherent Chinese hamster ovary (H9T3) cell lines. MTT and CyQuant NF assays were employed to assess cellular viability and proliferation after ENP exposure. Exposure to ENPs at a dose range of 5, 10, and 20 μg/mL induced dose-dependent increases in DNA damage and cytotoxicity. Genotoxicity profiles of ZnO > Ag > Fe[subscript 2]O[subscript 3] > CeO[subscript 2] > SiO[subscript 2] in TK6 cells at 4 h and Ag > Fe[subscript 2]O[subscript 3] > ZnO > CeO[subscript 2] > SiO[subscript 2] in H9T3 cells at 24 h were observed. The presented CometChip platform enabled efficient and reliable measurement of ENP-mediated DNA damage, therefore demonstrating the efficacy of this powerful tool in nanogenotoxicity studies.
Date issued
2014-03Department
Massachusetts Institute of Technology. Department of Biological EngineeringJournal
ACS Nano
Publisher
American Chemical Society (ACS)
Citation
Watson, Christa, Jing Ge, Joel Cohen, Georgios Pyrgiotakis, Bevin P. Engelward, and Philip Demokritou. “High-Throughput Screening Platform for Engineered Nanoparticle-Mediated Genotoxicity Using CometChip Technology.” ACS Nano 8, no. 3 (March 25, 2014): 2118–2133. doi:10.1021/nn404871p. © 2014 American Chemical Society
Version: Final published version
ISSN
1936-0851
1936-086X