Show simple item record

dc.contributor.authorSlavov, Nikolai
dc.contributor.authorBudnik, Bogdan A.
dc.contributor.authorSchwab, David
dc.contributor.authorAiroldi, Edoardo M.
dc.contributor.authorvan Oudenaarden, Alexander
dc.date.accessioned2015-05-06T13:47:45Z
dc.date.available2015-05-06T13:47:45Z
dc.date.issued2014-04
dc.date.submitted2014-02
dc.identifier.issn22111247
dc.identifier.urihttp://hdl.handle.net/1721.1/96921
dc.description.abstractFermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O[subscript 2] consumption, CO[subscript 2] production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration) and of mitochondrial folate-mediated NADPH production (required for oxidative defense). The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1 CA174420)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-GM068957)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant U54CA143874)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.celrep.2014.03.057en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceSlavoven_US
dc.titleConstant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysisen_US
dc.typeArticleen_US
dc.identifier.citationSlavov, Nikolai, Bogdan A. Budnik, David Schwab, Edoardo M. Airoldi, and Alexander van Oudenaarden. “Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis.” Cell Reports 7, no. 3 (May 2014): 705–714.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.approverSlavov, Nikolaien_US
dc.contributor.mitauthorSlavov, Nikolaien_US
dc.contributor.mitauthorvan Oudenaarden, Alexanderen_US
dc.relation.journalCell Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSlavov, Nikolai; Budnik, Bogdan A.; Schwab, David; Airoldi, Edoardo M.; van Oudenaarden, Alexanderen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2035-1820
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record