Show simple item record

dc.contributor.authorCermak, Nathan
dc.contributor.authorOlcum, Selim A.
dc.contributor.authorManalis, Scott R
dc.contributor.authorWasserman, Steven
dc.date.accessioned2015-05-12T18:32:59Z
dc.date.available2015-05-12T18:32:59Z
dc.date.issued2015-05
dc.date.submitted2014-11
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/96968
dc.description.abstractSimultaneously measuring multiple eigenmode frequencies of nanomechanical resonators can determine the position and mass of surface-adsorbed proteins, and could ultimately reveal the mass tomography of nanoscale analytes. However, existing measurement techniques are slow (<1 Hz bandwidth), limiting throughput and preventing use with resonators generating fast transient signals. Here we develop a general platform for independently and simultaneously oscillating multiple modes of mechanical resonators, enabling frequency measurements that can precisely track fast transient signals within a user-defined bandwidth that exceeds 500 Hz. We use this enhanced bandwidth to resolve signals from multiple nanoparticles flowing simultaneously through a suspended nanochannel resonator and show that four resonant modes are sufficient for determining their individual position and mass with an accuracy near 150 nm and 40 attograms throughout their 150-ms transit. We envision that our method can be readily extended to other systems to increase bandwidth, number of modes, or number of resonators.en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-09-0001)en_US
dc.description.sponsorshipCenter for Integration of Medicine and Innovative Technology (Contract 09-440)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1129359)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms8070en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleHigh-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributionsen_US
dc.typeArticleen_US
dc.identifier.citationOlcum, Selim et al. “High-Speed Multiple-Mode Mass-Sensing Resolves Dynamic Nanoscale Mass Distributions.” Nature Communications 6 (2015): 7070.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorOlcum, Selimen_US
dc.contributor.mitauthorManalis, Scott R.en_US
dc.contributor.mitauthorCermak, Nathanen_US
dc.contributor.mitauthorWasserman, Steven Charlesen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsOlcum, Selim; Cermak, Nathan; Wasserman, Steven C.; Manalis, Scott R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5223-9433
dc.identifier.orcidhttps://orcid.org/0000-0002-5866-4606
dc.identifier.orcidhttps://orcid.org/0000-0001-5277-6060
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record