MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tracking employment shocks using mobile phone data

Author(s)
Toole, Jameson Lawrence; Lin, Yu-Ru; Muehlegger, Erich; Shoag, Daniel; Gonzalez, Marta C.; Lazer, David; ... Show more Show less
Thumbnail
DownloadMain Article (1.565Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Can data from mobile phones be used to observe economic shocks and their consequences at multiple scales? Here we present novel methods to detect mass layoffs, identify individuals affected by them and predict changes in aggregate unemployment rates using call detail records (CDRs) from mobile phones. Using the closure of a large manufacturing plant as a case study, we first describe a structural break model to correctly detect the date of a mass layoff and estimate its size. We then use a Bayesian classification model to identify affected individuals by observing changes in calling behaviour following the plant's closure. For these affected individuals, we observe significant declines in social behaviour and mobility following job loss. Using the features identified at the micro level, we show that the same changes in these calling behaviours, aggregated at the regional level, can improve forecasts of macro unemployment rates. These methods and results highlight promise of new data resources to measure microeconomic behaviour and improve estimates of critical economic indicators.
Date issued
2015-05
URI
http://hdl.handle.net/1721.1/97149
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Engineering Systems Division
Journal
Journal of The Royal Society Interface
Publisher
Royal Society
Citation
Toole, J. L., Y.-R. Lin, E. Muehlegger, D. Shoag, M. C. Gonzalez, and D. Lazer. “Tracking Employment Shocks Using Mobile Phone Data.” Journal of The Royal Society Interface 12, no. 107 (April 29, 2015): 20150185–20150185.
Version: Author's final manuscript
ISSN
1742-5689
1742-5662

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.