Online Planning for Autonomous Running Jumps Over Obstacles in High-Speed Quadrupeds
Author(s)
Park, Hae won; Wensing, Patrick M.; Kim, Sangbae
DownloadRSS2015_Final.pdf (2.360Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
This paper presents a new framework for the generation of high-speed running jumps to clear terrain obstacles in quadrupedal robots. Our methods enable the quadruped to autonomously jump over obstacles up to 40 cm in height within a single control framework. Specifically, we propose new control system components, layered on top of a low-level running controller, which actively modify the approach and select stance force profiles as required to clear a sensed obstacle. The approach controller enables the quadruped to end in a preferable state relative to the obstacle just before the jump. This multi-step gait planning is formulated as a multiple-horizon model predictive control problem and solved at each step through quadratic programming. Ground reaction force profiles to execute the running jump are selected through constrained nonlinear optimization on a simplified model of the robot that possesses polynomial dynamics. Exploiting the simplified structure of these dynamics, the presented method greatly accelerates the computation of otherwise costly function and constraint evaluations that are required during optimization. With these considerations, the new algorithms allow for online planning that is critical for reliable response to unexpected situations. Experimental results, for a stand-alone quadruped with on-board power and computation, show the viability of this approach, and represent important steps towards broader dynamic maneuverability in experimental machines.
Date issued
2015-07Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Proceedings of the 2015 Robotics: Science and Systems Conference (RSS)
Citation
Park, Hae-Won, Patrick M. Wensing, and Sangbae Kim. "Online Planning for Autonomous Running Jumps Over Obstacles in High-Speed Quadrupeds." 2015 Robotics: Science and Systems Conference (July 13-17, 2015), Sapienza University of Rome, pp.1-9.
Version: Author's final manuscript
ISSN
2330-7668