Show simple item record

dc.contributor.authorJun, SangWoo
dc.contributor.authorLiu, Ming Gang
dc.contributor.authorLee, Sungjin
dc.contributor.authorHicks, Jamey
dc.contributor.authorAnkcorn, John
dc.contributor.authorKing, Myron Decker
dc.contributor.authorXu, Shuotao
dc.contributor.authorArvind, Arvind
dc.date.accessioned2015-07-16T12:19:12Z
dc.date.available2015-07-16T12:19:12Z
dc.date.issued2015-06
dc.identifier.isbn978-1-4503-3402-0
dc.identifier.urihttp://hdl.handle.net/1721.1/97746
dc.description.abstractComplex data queries, because of their need for random accesses, have proven to be slow unless all the data can be accommodated in DRAM. There are many domains, such as genomics, geological data and daily twitter feeds where the datasets of interest are 5TB to 20 TB. For such a dataset, one would need a cluster with 100 servers, each with 128GB to 256GBs of DRAM, to accommodate all the data in DRAM. On the other hand, such datasets could be stored easily in the flash memory of a rack-sized cluster. Flash storage has much better random access performance than hard disks, which makes it desirable for analytics workloads. In this paper we present BlueDBM, a new system architecture which has flash-based storage with in-store processing capability and a low-latency high-throughput inter-controller network. We show that BlueDBM outperforms a flash-based system without these features by a factor of 10 for some important applications. While the performance of a ram-cloud system falls sharply even if only 5%~10% of the references are to the secondary storage, this sharp performance degradation is not an issue in BlueDBM. BlueDBM presents an attractive point in the cost-performance trade-off for Big Data analytics.en_US
dc.description.sponsorshipQuanta Computer (Firm)en_US
dc.description.sponsorshipSamsung (Firm)en_US
dc.description.sponsorshipLincoln Laboratory (PO7000261350)en_US
dc.description.sponsorshipIntel Corporationen_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://www.ece.cmu.edu/calcm/isca2015/program.phpen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSang-Woo Junen_US
dc.titleBlueDBM: An Appliance for Big Data Analyticsen_US
dc.typeArticleen_US
dc.identifier.citationJun, Sang-Woo, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King, Shuotao Xu, and Arvind. "BlueDBM: An Appliance for Big Data Analytics." 42nd International Symposium on Computer Architecture (ISCA 2015) (June 2015).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorJun, SangWooen_US
dc.contributor.mitauthorLiu, Ming Gangen_US
dc.contributor.mitauthorLee, Sungjinen_US
dc.contributor.mitauthorXu, Shuotaoen_US
dc.contributor.mitauthorArvind, Arvinden_US
dc.relation.journalProceedings of the 42nd International Symposium on Computer Architecture (ISCA 2015)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsJun, Sang-Woo; Liu, Ming; Lee, Sungjin; Hicks, Jamey; Ankcorn, John; King, Myron; Xu, Shuotao; Arvinden_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9737-2366
dc.identifier.orcidhttps://orcid.org/0000-0001-7419-9575
dc.identifier.orcidhttps://orcid.org/0000-0001-9898-2361
dc.identifier.orcidhttps://orcid.org/0000-0003-3332-6288
dc.identifier.orcidhttps://orcid.org/0000-0003-3158-3731
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record